Adib, A., Mahmoudian Kafshgar Kalaee, M., Mahmoudian Shoushtari, M., and Khalili, K. 2017. Using of gene expression programming and climatic data for forecasting flow discharge by considering trend, normality, and stationarity analysis.
Arabian Journal of Geosciences. 10 (4), 1-14
Asadi, H., Shahedi, K., Jarihani, B., and Sidle, R.C 2019, Rainfall-Runoff Modelling Using Hydrologica Connectivity Index and Artificial Neural Network Approach. Water. 11(2),
2-20.
Aytek, A., Asce, M., and Alp, M. 2008. An application of artificial intelligence for rainfall–runoff modeling. Journal of Earth System Science. 117, 145-155.
Chen S.T., and P. S. Yu. 2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology. 340(2),63-77
Darbandi, S., and Pourhosseini, F. 2018, River flow simulation using a multilayer perceptron-firefly algorithm model. Applied Water Science. 8(85), 2-9.
Dash, Y., Mishra, S.K, and Panigrahi, B.K. 2018. Rainfall prediction for the Kerala state of India using artificial intelligence approaches, Computers and Electrical Engineering. 70, 66-73.
Elsafi, S.H. 2014. Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alexandria Engineering Journal. 53(3), 655-662.
Ghorbani, M.A., Deo, R.C., Karimi, V., Yassen, Z.M., and Terzi, O. 2018. Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey, Stochastic Environmental Research and Risk Assessment. 32(6),1683-1697
Ghorbani, M.A., Khatibi, R., Goel, A., Fazelifard, M.H., and Azani, A. 2016a. Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences. 75, 1-13.
Ghorbani, M.A., Khatibi, R., Karimi, V., Yaseen, Z.M., and Zounemat-Kermani, M. 2018. Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows. Water Resour Manage. 32(13), 4201-4215.
Ghorbani, M.A., Shamshirband, S., Zare Haghi, D.,
Azani, A., Bonakdari, H., and
Ebtehaj, I. 2017. Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Research. 172, 32–38.
Ghorbani, M.A., Zadeh, H.A., Isazadeh, M., and Terzi, O. 2016b. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences 75,476
Ghorbani, M.A., Khatibi, R., Geol, A., Fazelifard, M.H., and Azani, A. 2016. Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences. 75(6), 475-685
Hamel, L. 2009. Knowledge Discovery with Support Vector Machines, Hoboken, N.J. John Wiley.
Huang, S., Chang, J., Huang, Q., and Chen, Y. 2014. Monthly streamflow prediction using modified emd-based support vector machine. Journal of Hydrology. 511(4), 764-775.
Jayawardena, A.W., Muttil, N., and Fernando, T.M.K.G. 2005. Rainfall-Runoff Modelling usingGenetic Programming.Pp.1841-1847. International Congress on Modelling and Simulation Society of Australia and New Zealand December 2005, New Zealand.
Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M., and Ghafari, M. 2013. Stream flow simulation using svm, anfis and nam models (A case study). Caspian Journal of Applied Science Research. 2(4). 86-93.
Kartika, F., Brodjol, N., Sutikno, U., and Kuswanto, H. 2013. Prediction of Hourly Rainfall using Bayesian Neural Network with Adjusting Procedure. The Third Basic Science International Conference.
Kisi, O., Karahan, M., and Sen, Z. 2006. River suspended sediment modeling using fuzzy logic approach. Hydrology Process. 20(2), 4351-4362.
Lin, J.Y., Cheng, C.T., and Chau, K.W. 2006. Using support vector machines for long-term discharge prediction. Hydrology Science Journal. 51(3), 599-612.
Lin, J.Y., Cheng, C.T., and Chau, K.W. 2006. Using support vector machines for long-term discharge prediction. Hydrology Science Journal. 51 (3), 599-612.
Liong, S.Y., Gautam, T.R., Khu, S.T., Babovic, V., Keijzer, M., and Muttil, N. 2002. Genetic programming: A new paradigm in rainfall runoff modeling. Journal of the American Water Resources. 38, 705-718.
Liong, S.Y., and Sivapragasam, C. 2002. Flood stage forecasting with support vector machines. Journal of the American Water Resources. 38, 4. 173–186.
Misra, D., Oommen, T., Agarwa, A., Mishra, S.K., and Thompson, A.M. 2009. Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosystematics Engineering, 103(3), 527–535
Mohammadpour, M., Mehrabi, A., and Katouzi, M. 2012. Daily discharge forecasting using support vector machine. International Journal of Information and Electronics Engineering. 2(5), 769-772.
Nagy, H., Watanabe, K., and Hirano, M. 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulics Engineering. 128(3), 558-559.
Nourani, V., Alami, M.T., and Aminfar, M.H. 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence. 22(2), 466–472.
Nourani, V., Kisi, O., and Komasi, M. 2011. Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology. 402(1-2), 41–59.
Raheli, B., Aalami, M.T., El-Shafie, M., Ghorbani, M.A., and Deo, R.C. 2017. Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River. Environ Earth Science. 76, 503.
https://doi.org/10.1007/s12665-017-6842-z
Rai, R., and Nagasaka, K. 2018, Intelligent Prediction Model for Run-of-River Flow Considering Electricity Extreme Conditions, Journal of Clean Energy Technologies, 6(4):333-338.
Roshangar, K., Vojoudi Mehrabani, F., and Alami, M.T. 2013. Forecasting daily stream flows of vaniar river using genetic programming and neural networks approaches. Journal of Civil Engineering and Urbanism. 3(4), 197-200.
Saez, P.J., Aparicio, J.S., Sanchez, J.P., and Velazquez, D.P. 2018. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain, Water. 10(2), 2-19.
Shamshirband, S., Mohammadi, K., Tong, C.W., Zamani, M., Motamedi, Sh., and Sudheer, Ch. 2016. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation. Theoritical Applied Climatology. 125, 53–65.
Taheri, H., and Ghafouri, M. 2012. Comparison Between Active Learning Method And Support Vector Machine For Runoff Modeling. Journal of Hydrology and Hydromechanics. 1, 16-32.
Tayfur, G., Nadiri, A.A., and Asgharimoghaddam, A. 2014. Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management. 28(4), 1173–1184.
Tokar, A., and Johnson, P. 1999. Rainfall-Runoff Modeling Using Artificial Neural Networks. Journal of Hydrolical Engineering. 4(3), 232-239.
Tshilidzi, M. 2007. Bayesian Training of Neural Networks Using Genetic programming. Elsevier. 27 March 2007.
Uysal, G., and Sorman, A. 2017. Monthly streamflow estimation using wavelet-artificial neural network model: A case study on Çamlıdere dam basin, Turkey, Procedia Computer Science. 120(2), 237-244.
Vapnik, V., and Chervonenkis, A. 1991. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis. 1(3), 283-305.
Vapnik, V.N. 1995. The Nature of Statistical Learning Theory. Springer, New York
Vapnik, V.N. 1998. Statistical learning theory. Wiley, New York
Wang, L., Wang, Z., Qu, H., and Liu, S. 2018. Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting, Applied Soft Computing. 66(2), 1-17.
Xiong, T., Bao, Y., and Hu, Z. 2014. Multiple-output support vector regression with a firefly algorithm for intervalvalued stock price index forecasting. Knowledge-Based Systematic. 55, 87–100.
Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology. 396(4), 128–138.