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River flow forecasting is of immense importance for reliable planning, 

designing, and management of water resources projects. This study 

investigated the performance of wavelet neural network, support vector 

machine, artificial neural network, and Multiple Models Driven by Artificial 

Neural Networks (MMANN) in predicting flow time series of the Kashkan 

River in Lorestan, Iran. Daily flow time series was created from the records 

of Kashkan hydrometric and rain gauge stations for a 10-year period from 
2006 to 2016. To determine the best input-output mapping, estimations were 

repeated with different combinations of inputs derived from previous daily 

river flow data. Performance of the models was evaluated in terms of 

correlation coefficient, root mean square error, and mean absolute error. 

Performance comparisons showed that the MMANN model with a 

correlation coefficient of 0.960, root mean square error of 0.021, and mean 

absolute error of 0.001 generates the best daily flow estimates for the studied 

river. 
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Introduction 
River flow forecasting is of vital importance 

for managing floods and minimizing the 

associated loss of life and property. Accurate 
forecasting of river flow can play a key role 

in the planning and management of water 

resources, but considering the variety of 

factors that can influence this phenomenon, 
it is often difficult to produce flow estimates 

with good precision. The analytical tools 

most commonly used for river flow 
estimation are statistical and regression 

models, but given their normally linear 

nature, they are error-prone and often cannot 

model the time variations of this 
phenomenon with acceptable precision. 

Therefore, other models are needed to 
accurately forecast river flow with all 

effective factors taken into consideration. 

Over the years, intelligent modeling systems 
such as support vector machine (SVM), gene 

expression programming (GEP) and 

Bayesian network have been widely used in 

the prediction of nonlinear phenomena. In 
recent years, the use of intelligent models in 

river flow forecasting has received 

considerable attention from researchers. In 
the following, several notable examples of 

studies in this area are reviewed. 

In a study carried out by Elsafi (2014), an 

artificial neural network (ANN) was used to 
estimate flood discharge at several 
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hydrometric stations along Nile River in 

Sudan. The results of this study showed that 

ANN model can provide highly accurate 
estimates of flood discharge. Uysal and 

Sorman (2017) used a wavelet-artificial 

neural network model to predict monthly 

flows in Çamlıdere basin in Turkey and 
reported that this model showed excellent 

flow estimation capability. In a study 

by Dash et al. (2018) on Kerala basin in 
India, rainfall modeling was performed with 

the help of artificial neural networks, which 

were successful in providing good rainfall 

estimates. 
Ghorbani et al. (2018) investigated the 

performance of hybrid models based on 

ANN and SVM in estimating the discharge 
of Zarrineh River in Iran. The results of this 

study showed that the ANN-based hybrid 

model was more accurate than the one based 
on SVM. In a study conducted by Saez et al. 

(2018), the Soil and Water Assessment Tool 

(SWAT) and ANN were used to estimate 

runoff in two basins in Spain. This study 
reported that the ANN model outperformed 

the SWAT model in this application. 

Ghorbani et al. (2018), analyzed the 
performance of several hybrid artificial 

intelligent models in the estimation of 

monthly flow into the Lake Egirdir in 
Turkey, and concluded that the hybrid model 

comprising ANN and the firefly algorithm 

performed better than other hybrid models. 

Rai and Nagasaka (2018) used radial basis 
function network (RBFN) and ANN models 

to estimate runoff in Kathmandu basin in 

Nepal and found that RBFN was more 
accurate in this application. 

Darbandi and Pourhosseini (2018) 

assessed the performance of an ANN-firefly 

algorithm hybrid model in the estimation of 
the monthly flow of Ajichay basin in Iran 

and showed that it provides higher accuracy 

than the ordinary ANN model. In a study by 
Wang et al. (2018), the monthly flow of the 

Clearwater River in the United States was 

predicted by an ANN-based hybrid, which 

was shown to outperform the basic ANN 

model. Asadi et al. (2019) used an ANN 

model to predict the monthly flow of the 
Haughton River in Australia and evaluated 

its performance in terms of correlation 

coefficient, root mean square error, and 

Nash-Sutcliffe efficiency. The results 
showed that the developed ANN model has 

an acceptable performance in estimating 

monthly flow. 
Other notable studies in this area include 

Jayawardena et al. (2005), Marwala et al. 

(2007), Aytek et al. (2008), Taheri, and 

Ghafouri (2012), Kartika et al. (2013), Xiong 
et al. (2014), Tayfur et al. (2014), Ghorbani et 

al. (2016a), Ghorbani et al. (2016b), 

Shamshirband et al. (2016), Ghorbani et al. 
(2017), and Raheli et al. (2017).  

The Kashkan River is one of the most 

important rivers in Lorestan, Iran and a 
major source of agriculture and drinking 

water for many communities in this area, but 

over the recent years, a decline in the flow of 

this river has caused many problems in the 
local catchment. Accurate simulation of the 

flow of the Kashkan River can contribute to 

adopting suitable water management 
measures. Therefore, this study aimed to 

predict the daily flow of the Kashkan River 

using MMANN. 
 

Materials and methods 

Study area 

The Kashkan River is the most flood-prone 
river in Lorestan Province in the 

southwestern part of Iran. With an area 

66.97km
2
, Kashkan basin covers one-third of 

the Lorestan area and it is an important 

tributary of the Karkheh River in the south. 

In the hydrological division of Iran, this 

basin is part of the Persian Gulf basin. 
Kashkan basin is located between 33° 5′ 45″ 

and 33° 44′ 41″ northern latitudes and 47° 

31′ 34″ and 48° 12′ 6″ eastern longitudes. 
The location of the study area is shown in 

Figure 1. 
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Figure 1. The Study area 

 

Artificial neural network 

Artificial neural networks have found 

extensive application in hydrology and 

water resources management studies 
(Nourani et al., 2011). Structurally, an 

artificial neural network typically consists 

of an input layer, a number of middle 
(hidden) layers, and an output layer. The 

input layer acts as an instrument for 

importing data and preparing them for 

processing, the hidden layers consist of the 
processor nodes, and the output layer 

produces and presents the values predicted 

by the network. The first practical 
applications of artificial neural networks 

emerged with the introduction of multilayer 

perceptron networks. It has been shown that 
among the learning algorithms, using the 

backpropagation algorithm with 

feedforward structure, and using three 

layers is a very rewarding approach for 
solving complex engineering problems and 

simulating and predicting hydrological time 

series (Nourani et al., 2009). The most 
common activation functions used in 

backpropagation networks are the sigmoid 

and hyperbolic tangent functions (Tokar & 
Johnson, 1999). 

 

Support vector machine 

Support vector machine is an efficient 
learning system based on the theory of 

constrained optimization that uses the 

structural risk minimization principle to 
produce a globally optimal solution 

(Vapnik, 1995). In SVM regression 

modeling, the process involves estimating a 

function based on the dependent variable Y, 

which itself is a function of several 

independent variables (x). Like other 

regression problems, it is assumed that the 
relationship between independent and 

dependent variables is characterized by an 

algebraic function such as f(x) plus some 
perturbation or allowed error (ε) (Vapnik, 

1998). 

 ( ) W 
 
  ( ) b                             (1) 

   ( ) noise                                    (2) 

where W
T
 is the transpose of the vector of 

coefficients, and b is the characteristic 

constant of the regression function and   is 

the kernel function. Here, the goal is to find 
a functional form for f (x). This is 

accomplished by training the SVM model 

with a set of data (training set) (Misra et al., 

2009). To obtain W and b, the error 
function (Equation 3) in the ε-SVM model 

should be minimized subject to the 

constraints in Equations (4) and (5) (Hamel, 
2009). 
1

2
W
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i 1    ∑ εi

 N
i 1                   (3) 

W
 
    ( i) b- 

i
   ε  εi

                        ( 4) 

(5) 

 
i
 W
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In the above equations, C is a positive 

integer which determines the penalty 
applied upon encountering an error during 

training,    is the kernel function, N is the 

number of samples, and    and   
  are the 

slack variables. The SVM regression 
function can be rewritten as follows: 

 ( )  ∑  ̅i
N
i 1  ( i)

    ( ) b                     (6) 
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In Equation 6,  ̅  is the mean of the 

Lagrangian coefficients. It could be 

difficult to compute  ( ) in its 

characteristic space (Yoon et al., 2011). To 
solve this problem, it is typical to build the 

SVM regression model with a kernel 

function of the following form. 

 (   , )  ( i)
 √ b2-4ac                     (7) 

Different kernel functions can be used to 

construct different types of ε-SVM. The 

kernel functions that can be used in SVM 
regression models include polynomial 

kernel, and radial basis function (RBF) 

kernel, and linear kernel, which can be 

obtained from the following 8-10 equations. 
The structure of the SVM model is 

illustrated in Figure 2. Since RBF, linear 

and polynomial kernels are the most 
commonly used kernel functions (Basak et 

al., 2007; Vapnik and Chervonenkis, 1991), 

this study also used these three kernel 
functions. It should be noted that the 

computations of SVM were performed by 

coding in MATLAB, and the parameters of 

the kernel functions were optimized 
through trial and error. 

 ( ,  ) (t  i   )
d
                                    (8) 

 ( , i) e p (-
‖ - i‖

2

2 2
)                             (9) 

 ( ,  )                                               (10) 

 

Wavelet neural network 

Wavelet transform (WT) has been 

developed as an alternative to short-time 
Fourier transform (STFT) and specifically 

to overcome the frequency resolution 

problems of that transform. Like STFT, WT 
involves partitioning the signal into several 

windows and executing the transform 

procedure on each window separately 
(Wang et al., 2000). But the most important 

difference between STFT and WT is that in 

the latter, not only the window length or 

frequency resolution but also the window 
width or frequency scale vary depending on 

the type of frequency. In other words, WT 

operates based on the scale rather than 
frequency and can be viewed as a time-

scale transform. Hence, using the wavelet 

transform, the signal can be expanded at 

high scales to give a detailed view or 

compressed at low scales to give a global 

view of the signal (Wang et al, 2000). A 
wavelet means a small wave, part or 

window of the main signal whose energy is 

concentrated in time. Using the wavelet 

transform or analysis, a mother signal or 
time series can be decomposed into 

multiple wavelets with different resolutions 

and scales. Therefore, wavelets are 
translated and scaled samples of the mother 

signal, which are extremely attenuating 

oscillate over a finite length. This feature of 

wavelet transform makes it suitable for 
local analysis of unsteady and transient 

time series (Shin et al, 2005). 

Wavelet transform has been defined in two 
forms: continuous and discrete. 

 

Continuous Wavelet Transform (CWT) 
Continuous wavelet transform of the 

function f(t) has been defined as follows 

(Vapnik, 1998). 

(11) 

    
 (   )    

 (   )

 
 

√| |
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)  

  

  

 〈 ( )     ( )〉 

(12)     ( )  
 

√| |
 (
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Equation (12) is a bivariate relationship for 

s, which is the scale parameter (inverse of 
 requenc ), and τ, which is the translation 

parameter. In the above equations, the 

symbol * denotes complex conjugate, ψ is 

the mother wavelet or window function, 

and 
 

√| |
 (

   

 
) are the wavelets obtained by 

the translation and scaling of the mother 
wavelet (Wang et al, 2000). The term 

mother is used because all translated and 

scaled samples (daughter wavelets) are 

obtained from this function. In other words, 
the mother wavelet is a template for other 

windows. The symbol 〈 〉 denotes the 

vector multiplication of two functions in the 
signal space. 

 

Multiple Models Driven by Artificial 

Neural Networks 

Another strategy for implementing the 

models discussed in this paper is to run 
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MMs by an artificial neural network (MM-

ANN). Neural networks are parallel 

information processing systems that imitate 
the logical processes of the human brain. 

These systems consist of a set of neurons or 

nodes placed in multiple layers, with 

conversion functions and weights and 
biases which can be adjusted according to 

inputs to produce the required outputs. Each 

neuron in each layer is linked to all neurons 
in the subsequent layer, but the same cannot 

be said for neurons in each individual layer. 

These neurons provide suitable conversion 

functions for the weighted input 
parameters. The neural network used in this 

study is a feedforward multilayer 

perceptron (MLP) that is trained by a 
backpropagation technique such as the 

least-squares method. In the topology 

considered for ANNs, the network consists 
of three layers: an input layer, a hidden 

layer, and an output (target) layer. In this 

study, ANNs are used as artificial 

intelligence for executing multiple models 
(AIMM). The strategy used for this purpose 

is as follows:  

(i) There are two levels of supervised 
learning.  

(ii) At level 1 (L1), two models of supervised 

artificial intelligence models are built: 
SVM KKT and SVM-FFA. The inputs of 

these models are determined by their 

structure, which is unknown and will be 

determined through trial and error (as 
discussed in the introduction) 

(iii) At level 2 (L2), an ANN is used to 

execute the models of L1. The inputs of 
this level are the outputs of the above 

models. L2 is called MM-ANN. 

(iv) The obtained values are used as target 

values for both L1 and L2 models. 
(v) ANN is first executed in the 

backpropagation mode to identify the 

parameters of each model and then 
executed in the feed-forward mode to 

generate the prediction outputs, which are 

then compared with the observed values
for performance evaluation. The merit of 

this strategy is the ability to learn on two 

levels. 

 

 

 

Evaluation criteria 

The accuracy and performance of the models 

were evaluated by the use of correlation 
coefficient (R), root mean square error 

(RMSE) and mean absolute error (MAE), 

which are given by the following equations. 

The best values for R, RMSE, and MAE are 
1, 0, and 0, respectively. 

  
∑ ( i- ̅)( i- ̅)
N
i 1

√∑ ( i- ̅)
2N

i 1
∑  ( i- ̅)

2N
i 1

         -1     1 (10) 

 MS  √
1

N
∑  ( i- i)

2
                          N

i 1  (11) 

M   
1

n
∑| i- i|                                     (12) 

In the above equations,    and    are the 

values observed and predicted at the i-th 

time step, N is the number of time steps, 

and  ̅ and  ̅ are the means of observed and 

predicted values. In addition to the above 

criteria, the diagrams of distribution and 

time series of observed-predicted values  
were also used to further analysis. 

 

Results and Discussion 
One of the most important steps in 

modeling is the selection of a suitable 

combination of input variables. For this 
selection, first, the cross-correlation of 

input and output variables was computed, 

and then the input parameters that would 

give a suitable model for predicting the 
flow of the Kashkan River were selected 

accordingly. The parameters selected in this 

step are listed in Table 1. In this table,  
P(t-2), P(t-1), P(t), Q(t-1,), Q(t-2), Q(t-3), 

denote river flow at times t-1, t-2, and t-3, 

and are the model inputs, and the output is 

Q(t) or river flow at time t. Regarding the 
training, it should be remembered that the 

uncertain nature of the mechanisms that 

govern river flow not only increase the 
modeling complexity and memory 

requirement but also decrease its accuracy. 

Therefore, river flow modeling should be 
performed using the most effective 

observational data in the training (Kisi et 

al., 2006). Since the method of this study 

involves predicting discharge based on the 
sequence of discharge in preceding days, 
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only the normalized discharge values with 

sequences of up to 5 days long were used in 

the training. As shown in the table, this 
operation was performed with different 

combinations of sequences, which are 

referred to as patterns. Also, given the 

existence of cross-correlation value of more 
than 0.500 between input and output data 

(Table 2), different combinations of input 

parameters were tested to determine the 
best model for estimating daily flow rates 

of Kashan River. For this purpose, we used 

the daily flow data of Poledokhtar 

hydrometric station in Lorestan, which 

consists of 3650 records collected on a 

daily basis over a 10-year period (2006-

2016). Ultimately, 2920 records were 
selected for training and the remaining 730 

records were used for validation of the 

trained models. This selection was made 

according to the recommendations that 80% 
of the data should be randomly selected for 

training and 20% of the data (consisting of 

all varieties) should be reserved for testing 
(Nugy et al, 2002). Table 3 shows the 

statistical properties of the flow discharge 

parameter.

 
Table 1. The cross-correlation between input and output parameters 

Q(t-3) Q(t-2) Q(t-1) P(t-2) P(t-1) P(t)  

0.51 0.58 0.7 0.54 0.65 0.74 Q(t) 

 

Table 2. Selected compositions of input parameter models, multiple models driven by artificial neural 

networks, wavelet neural network, support vector machines and artificial neural network 
Output Input Number 

Q(t) P(t) 1 
Q(t) P(t),P(t-1) 2 
Q(t) P(t),P(t-1),P(t-2) 3 
Q(t) P(t),P(t-1),P(t-2),Q(t-1) 4 
Q(t) P(t),P(t-1),P(t-2),Q(t-1),Q(t-2) 5 
Q(t) P(t),P(t-1),P(t-2),Q(t-1),Q(t-2),Q(t-3) 6 

 
Table 3. The statistical properties of the parameters used in the statistical period 

Skewness Standard deviation Maximum Mean Minimum Parameter 

1.521 20.129 119 23.435 0.011 Training 

Discharge(m3/s) 
1.859 19.573 111 18.572 0.312 

Validation and 
Testing 

 

Artificial neural network 

To determine the best network structure and 
specifications, daily discharge modeling 

was performed with MLPs using different 

numbers of neurons. The output layers of 

the networks were constructed with the 
hyperbolic tangent function, which is a 

commonly used activation function. MPLs 

were trained by an error backpropagation 
training algorithm called the Levenberg-

Marquardt algorithm to achieve faster 

convergence in the training phase. Different 

combinations of activation functions were 
used in the hidden layer(s). For the training 

phase, the number of iterations was set to 

1000 and performance was evaluated in 
terms of mean square error. The number of 

neurons in the input and output layers was 

set according to the nature of the problem, 
but the number of hidden neurons was 

determined by trial and error with the goal 

of minimizing the error value. To determine 
the best number of hidden neurons, the 

algorithm was executed with a gradually 

increasing number of hidden neurons until 

there was no further improvement in the 
accuracy of outputs. Table 4 compares the 

performance of networks with different 

structures and specifications. This table also 
shows the statistical specifications of 

training and validation data. As can be seen, 

structure 6 with the correlation coefficient 

of 0.898 and the root mean square error of 
0.071 and mean absolute error of 0.006 in 

the validation phase was found to be the 

most suitable structure for modeling of the 
daily maximum discharge. Figure 2 shows 

the observed and predicted values of the 

ANN model in validation phase. 
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Table 4. The analysis of ANN model results for river flow inputs. 
Testing Training 

Structure 
MAE RMSE R MAE RMSE R 

0.092 0.224 0.841 0.208 0.621 0.823 1 
0.078 0.201 0.852 0.174 0.477 0.837 2 
0.067 0.162 0.864 0.162 0.317 0.843 3 
0.034 0.112 0.875 0.036 0.164 0.854 4 
0.018 0.088 0.891 0.027 0.138 0.863 5 
0.006 0.071 0.898 0.010 0.115 0.886 6 

 

 

 
 

Figure 2. Observed and predicted values of the ANN model in validation phase 

 

Wavelet neural network 

Daily discharge of Kashkan station was 
also modeled with wavelet neural networks 

with different numbers of hidden neurons 

and layers. For the wavelet neural network 

model, first, a suitable wavelet type 
(symlet) was selected. Then, transform was 

applied to the data to extract the 

approximation coefficients and their details. 
For the activation function, the Mexican hat 

wavelet function, which is the second 

derivative of the Gaussian function, was 
used. The training was performed using the 

gradient descent algorithm, which is 

commonly used in the training of neural 

networks, network error minimization, and 
adjustment of network parameters. As 

shown in Table 5, structure 6 with a 

correlation coefficient of 0.944, root mean 

square error of 0.025 and a mean absolute 
value of 0.002 in the validation phase was 

the most suitable choice for the modeling of 

discharge at daily time scale. Figure 3 

displays the diagram of changes in the 
predicted and observed values versus time 

for the best model obtained for the 

validation data. As can be seen, the wavelet 
neural network model has had an 

acceptable performance in the estimation of 

most of the values. As Figure 3 shows, the 
wavelet neural network model has 

performed well in estimating most of the 

minimum and maximum values and has 

generated very accurate estimates for these 
values.

 
Table 5. The analysis of WNN model results for river flow inputs. 

Testing Training 
Structure 

MAE RMSE R MAE RMSE R 

0.052 0.082 0.888 0.084 0.158 0.864 1 
0.043 0.068 0.894 0.068 0.132 0.871 2 
0.026 0.057 0.905 0.048 0.114 0.882 3 
0.012 0.045 0.917 0.020 0.094 0.894 4 
0.005 0.032 0.935 0.009 0.075 0.908 5 
0.002 0.025 0.944 0.003 0.038 0.917 6 
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Figure 3. Observed and predicted values of the WNN model in validation phase 
 

Support vector machine 
To estimate the daily flow of Kashan River 
with the SVM model, first, data were 
normalized to reduce the amplitude of 
variations in daily flow data of this river. 
Then, the optimal parameter setting for the 
SVM model, including the values of ε and 
C, had to be determined. Given the use of 
RBF kernel function in the SVM model, 
and its good accuracy in estimating the 
daily flow of rivers (Lin et al., 2006; Liong 
et al., 2002), the characteristic value of this 
function (γ) had to be determined. The first 
two parameters (ε and  ) were obtained 
from a network search optimization 
algorithm and the last variable (γ) was 
determined through trial and error. It should 
be noted that given the low speed of the 
network search optimization algorithm, this 
task was performed using the modified 
network search algorithm proposed by 
Chen and Yu (5), which is known as two-
step network search algorithm, in 
combination with cross-validation. For this 
purpose, first, large-scale networks were 
analyzed to determine the range o  ε and   
for a constant γ   hen, the range thus found 
was subdivided into progressively smaller 
networks until the values of ε and   were 
determined. The same process was repeated 
 or other γ values, thus producing different 
models  or di  erent γ values. Among the 

developed models, the ones with the lower 
errors were determined and their ε,   and γ 
values were extracted. The results obtained 
for the SVM model are presented in Table 
6. According to this table, model structure 6 
with a correlation coefficient of 0.905, root 
mean square error of 0.068m

3
/s and a mean 

absolute error value of 0.003 m
3
/s in the 

validation phase outperformed other 
structures. As shown in Table 6, the SVM 
model performed very well in predicting 
the daily flow values of the Kashkan River 
even when only one input parameter was 
used. This means that even if there are gaps 
in statistical reports, the SVM model can 
produce good flow estimates based on 
minimal inputs such as the flow rate of the 
previous day. Figure 4 shows the diagram 
of the best model obtained for the 
validation data. In Figure 4-b, most of the 
estimates are around the bisector line (y = 
x), which means good consistency between 
predicted and observed values. Figure 4-a, 
which shows the variations of predicted and 
observed values over time, also 
demonstrates the good accuracy of the 
model in estimating most of the values. 
Figure 4-b also shows that the SVM model 
has underperformed in estimating some 
flood flows and peak flows on wet days, as 
the points corresponding to these 
estimations are away from the bisector line. 

 
Table 6. The analysis of SVM model results for river flow inputs. 

SVM Parameters Testing Training 
Structure 

  ε C MAE RMSE R MAE RMSE R 

0.63 0.3 10 0.087 0.211 0.858 0.195 0.659 0.848 1 
0.42 0.3 10 0.072 0.194 0.873 0.161 0.461 0.854 2 

0.28 0.2 10 0.061 0.156 0.876 0.154 0.306 0.863 3 
0.25 0.2 10 0.015 0.107 0.884 0.023 0.157 0.859 4 
0.22 0.1 10 0.008 0.085 0.897 0.013 0.124 0.871 5 
0.17 0.1 10 0.003 0.068 0.905 0.004 0.104 0.892 6 
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Figure 4. Observed and predicted values of the SVM model in validation phase 

 

Multiple Models Driven by Artificial 

Neural Networks 
The MMANN model was used to compare 

the results of the developed model with 

those of conventional artificial intelligence 
models. As shown in Table 7, structure 6 

with a correlation coefficient of 0.960, root 

mean square error of 0.021, and a mean 

absolute error of 0.001 in the validation 

phase is the best structure for modeling 
discharge at daily time scale. Figure 5 

shows the diagrams of estimation accuracy 

for the best model for the validation data. 
As these results indicate, the MMANN 

model has had acceptable performance in 

estimating all values. 
 
Table 7. The analysis of MMANN model results for river flow inputs. 

Testing Training 
Structure 

MAE RMSE R MAE RMSE R 

0.032 0.075 0.901 0.074 0.145 0.868 1 
0.021 0.063 0.914 0.053 0.126 0.872 2 
0.015 0.048 0.928 0.044 0.107 0.886 3 
0.008 0.034 0.944 0.015 0.084 0.904 4 
0.002 0.028 0.951 0.007 0.061 0.918 5 
0.001 0.021 0.960 0.002 0.032 0.926 6 

 

 
 

Figure 5. Observed and predicted values of the MMANN model in validation phase 

 

Comparison of model performance 

As Table 8 indicates, the comparison of the 
optimal solutions obtained from different 

models showed that all four models can 

simulate the daily flow of the Kashkan 
River with good accuracy and minimal 

error. However, among these models, 

MMANN had the highest correlation 

coefficient (0.960) and the lowest root 
mean square error and mean absolute error 

(0.021m
3
/s, and 0.001m

3
/s) at the validation 

phase. The violin plots of the four models 
are illustrated in Figure 6. In this figure, the 

average of the estimates of the ANN model 
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is lower than that of other models. The 

lower bound of the MMANN model 

indicates that it has outperformed others in 

estimating minimum values. 

 
Table 7. The analysis of MMANN, SVM, WNN, ANN model results for river flow inputs. 

Testing Training 
Model 

MAE RMSE R MAE RMSE R 

0.006 0.071 0.898 0.010 0.115 0.886 ANN 
0.003 0.068 0.905 0.004 0.104 0.892 SVM 
0.002 0.025 0.944 0.003 0.038 0.917 WNN 
0.001 0.021 0.960 0.002 0.032 0.926 MMANN 

 

 
 

Figure 6. Violin Plot of observed and predicted values of the MANN, WNN, SVM and ANN  

models in training and testing phase 

 
Conclusion 
This study aimed to evaluate the 
performance of several models in 
simulating the daily flow of the Kashkan 
River in Lorestan Province of Iran. The 
models used for this purpose included 
artificial neural network, wavelet neural 
network, support vector machine, etc. The 
observed flow values were compared with 
those predicted by the models (Bayesian 
network, gene expression programming, 
and support vector machine) based on a set 
of evaluation criteria. The results of this 
study can be summarized as follows.  
All of the studied models performed better 
in a structure with 1 to 5 lags than in other 
structures.  
The SVM model was able to accurately 
predict daily flow values based on 
minimum inputs. This capability is 
especially helpful for reaching more 
accurate estimates in cases where stations 
have missing records. According to the 
evaluation criteria, all of the models could 
generate accurate daily river flow estimates, 
but among them, the MMANN model was 
more accurate and less error-prone than 
ANN and SVM models. Overall, these 

results suggest that the MMANN model can 
serve as an effective tool for predicting 
daily river flows and thus facilitating the 
development and implementation of surface 
water management strategies and 
supporting management decisions with the 
purpose of maintaining and restoring river 
discharge. 
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