Abolhasani, S., Taleai, M., Karimi, M. and Rezaee Node, A. 2016. Simulating urban growth under planning policies through parcel-based cellular automata (ParCA) model. International Journal of Geographical Information Science. 30(11), 2276-2301.
Aburas, M.M., Ho, Y.M., Ramli, M.F. and Ash’aari, Z.H. 2016. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation. 52, 380-389.
Arpe, K., Bengtsson, L., Golitsyn, G.S., Mokhov, I.I., Semenov, V.A. and Sporyshev, P.V., 2000. Connection between Caspian Sea level variability and ENSO. Geophysical Research Letters. 27(17), 2693-2696.
Askarova, M.A. and Mussagaliyeva, A.N. 2014. The ecological situation in contaminated areas of oil and gas exploration in Atyrau Region. Procedia-Social and Behavioral Sciences. 120, 455-459.
Azari, M., Tayyebi, A., Helbich, M. and Reveshty, M.A., 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GIScience and Remote Sensing. 53(2), 183-205.
Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. and Boss, E.S. 2006. Climate-driven trends in contemporary ocean productivity. Nature. 444(7120), p.752.
Berberoğlu, S., Akın, A. and Clarke, K.C. 2016. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape and Urban Planning. 153, 11-27.
Boerner, R.E., DeMers, M.N., Simpson, J.W., Artigas, F.J., Silva, A. and Berns, L.A. 1996. Markov models of inertia and dynamism on two contiguous Ohio landscapes. Geographical Analysis. 28(1), 56-66.
Cabral, P. and Zamyatin, A. 2009. Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna. 76(158), 191-198.
Chassot, E., Bonhommeau, S., Dulvy, N.K., Mélin, F., Watson, R., Gascuel, D. and Le Pape, O. 2010. Global marine primary production constrains fisheries catches. Ecology Letters. 13(4), 495-505.
Chen, Z., C., Hu, F., Muller-Karger. 2007. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote sensing of Environment. 109(2), 207-220.
Chen, Y., Li, X., Liu, X., Ai, B. and Li, S. 2016. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landscape and Urban Planning. 152, 59-71.
Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S.K., Ghosh, S., Mitra, D., Ghosh, T. and Hazra, S. 2017. Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment. 5, 64-77.
Giannoulaki, M., E. Schismenou, M.-M. Pyrounaki and Tsagarakis, K. 2014. Habitat characterization and migrations. In: Ganias, K. (ed.), Biology and Ecology of Sardines and Anchovies. CRC Press, Boca Raton, FL: 190–241
Grecian, W.J., Lane, J.V., Michelot, T., Wade, H.M. and Hamer, K.C. 2018. Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models. Journal of the Royal Society Interface. 15(143), p.20180084.
Gschweng, M., Kalko, E.K., Berthold, P., Fiedler, W. and Fahr, J. 2012. Multi‐temporal distribution modelling with satellite tracking data: predicting responses of a long‐distance migrant to changing environmental conditions. Journal of Applied Ecology. 49(4), 803-813.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling. 222(20-22), 3761-3772.
Guisan, A. and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3), 147-186.
Hu, Z. and Lo, C.P., 2007. Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems. 31(6), 667-688.
Ibrayev, R.A., Özsoy, E., Schrum, C. and Sur, H.I. 2010. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Science. 6(1), 1-10.
Johnson, J.E. and Welch, D.J. 2009. Marine fisheries management in a changing climate: a review of vulnerability and future options. Reviews in Fisheries Science. 18(1), 106-124.
Jokar Arsanjani, J. 2011. Dynamic land use/cover change modelling: Geosimulation and multiagent-based modelling. Springer Science and Business Media.
Jokar Arsanjani, J., Kainz, W. and Mousivand, A.J. 2011. Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. International Journal of Image and Data Fusion. 2(4), 329-345.
Jokar Arsanjani, J., Helbich, M., Kainz, W. and Boloorani, A.D. 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
Kamusoko, C., Aniya, M., Adi, B. and Manjoro, M. 2009. Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography. 29(3), 435-447.
Kideys, A.E., Roohi, A., Eker-Develi, E., Mélin, F. and Beare, D. 2008. Increased chlorophyll levels in the southern Caspian Sea following an invasion of jellyfish. International Journal of Ecology. 2008.
Kopelevich, O.V., Burenkov, V.I., Ershova, S.V., Sheberstov, S.V. and Evdoshenko, M.A. 2004. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas. Deep Sea Research Part II: Topical Studies in Oceanography. 51(10-11), 1063-1091.
Kuhn, M. and Johnson, K. 2013. Applied predictive modelling. Springer. 560p.
Ku, C.A. 2016. Incorporating spatial regression model into cellular automata for simulating land use change. Applied Geography. 69, 1-9.
Leonov, A.V. 2002. Biogenic Riverine Runoff into the Caspian Sea. Oceanology. 42(5), 651-660.
Li, X., Zhang, X., Yeh, A. and Liu, X., 2010. Parallel cellular automata for large-scale urban simulation using load-balancing techniques. International Journal of Geographical Information Science. 24(6), 803-820.
Liu, X., Li, X., Shi, X., Zhang, X. and Chen, Y. 2010. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science. 24(5), 783-802.
Longhurst, A. 1995. Seasonal cycles of pelagic production and consumption. Progress in oceanography. 36(2), 77-167.
Matawa, F., Murwira, A. and Schmidt, K.S. 2012. Explaining elephant (Loxodonta africana) and buffalo (Syncerus caffer) spatial distribution in the Zambezi Valley using maximum entropy modelling. Ecological Modelling. 242, 189-197.
Nasrollahzadeh, H.S., Din, Z.B., Foong, S.Y. and Makhlough, A. 2008. Trophic status of the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity. Continental Shelf Research. 28(9), 1153-1165.
Omrani, H., Tayyebi, A. and Pijanowski, B. 2017. Integrating the multi-label land-use concept and cellular automata with the artificial neural network-based Land Transformation Model: an integrated ML-CA-LTM modeling framework. GIScience and Remote Sensing. 54(3), 283-304.
Palmate, S.S., Pandy, A. and Mishra, S.K. 2017. Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Applied Geography. 82, 11-23.
Razgour, O., Hanmer, J. and Jones, G. 2011. Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biological Conservation. 144(12), 2922-2930.
Renssen, H., Lougheed, B.C., Aerts, J.C.J.H., De Moel, H., Ward, P.J. and Kwadijk, J.C.J. 2007. Simulating long-term Caspian Sea level changes: the impact of Holocene and future climate conditions. Earth and Planetary Science Letters. 261(3-4), 685-693.
Roessig, J.M., Woodley, C.M., Cech, J.J. and Hansen, L.J. 2004. Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries. 14(2), 251-275.
Roohi, A., Kideys, A.E., Sajjadi, A., Hashemian, A., Pourgholam, R., Fazli, H., Khanari, A.G. and Eker-Develi, E. 2010. Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore Mnemiopsis leidyi. Biological Invasions. 12(7), 2343-2361.
Sang, L., Zhang, C., Yang, J., Zhu, D. and Yun, W. 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling. 54(3-4), 938-943.
Schismenou, E., Tsoukali, S., Giannoulaki, M. and Somarakis, S. 2017. Modelling small pelagic fish potential spawning habitats: eggs vs spawners and in situ vs satellite data. Hydrobiologia. 788(1), 17-32.
Shafizadeh-Moghadam, H., Asghari, A., Taleai, M., Helbich, M. and Tayyebi, A. 2017. Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GIScience and Remote Sensing. 54(5), 639-656.
Shahrban, M. and Etemad-Shahidi, A. 2010. Classification of the Caspian Sea coastal waters based on trophic index and numerical analysis. Environmental Monitoring and Assessment. 164(1-4): 349-356.
Sissenwine, M. and Murawski, S. 2004. Moving beyond intelligent tinkering: advancing an Ecosystem Approach to Fisheries. Marine Ecology Progress Series. 274, 291-295.
Sur, H.I., Özsoy, E. and Ibrayev, R. 2000. Satellite-derived flow characteristics of the Caspian Sea. Elsevier Oceanography Series. 63, 289-297.
Wilsey, C.B., Lawler, J.J., Maurer, E.P., McKenzie, D., Townsend, P.A., Gwozdz, R., Freund, J.A., Hagmann, K. and Hutten, K.M. 2013. Tools for assessing climate impacts on fish and wildlife. Journal of Fish and Wildlife Management. 4(1), 220-241.
Yassemi, S., Dragićević, S. and Schmidt, M. 2008. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling. 210(1-2), 71-84.
Zhu, J., Xu, J., Guo, C., Zhuo, X., Gao, Y. and Xing, S. 2016. An empirical research of marine fishery forecasting methods based on the classification model. In 2016 International Conference on Progress in Informatics and Computing (PIC) (1-7). IEEE.