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Abstract 
Primary production is the most important functional feature of terrestrial and aquatic 

ecosystems affecting many processes. In this study, we integrated logistic regression and 
Markov chain to predict chlorophyll-a (chl-a) concentration as an index of primary 
production in the Caspian Sea. We categorized the continuous variable, chl-a, using 
quantile method for analysis and prediction. Remotely-sensed data of chl-a and nine 
environmental variables were downloaded from MODIS dataset for the years 2013 and 
2016. The level of chl-a in 2019 was predicted across the Caspian Sea. Chl-a data was 
divided into three distinct levels (i.e. low, medium and high) based on 0.33 and 0.67 
quantiles, and a logistic regression model was used based on transition between the levels 
of chl-a between 2013 and 2016, and between 2016 and 2019. The Markov chain modelling 
indicated an increasing trend in chl-a levels (low to medium, low to high, medium to high) 
for some parts of the Caspian Sea, and also a stable condition for other parts including 
transition from medium to medium, high to high had the highest transition probabilities for 
both periods. From 2013 to 2019, the calculated areas of the pixels having low levels of 
chl-a decreased and there were considerable increases in the areas with medium and high 
chl-a levels. Accordingly, the chl-a level in the Caspian Sea at 2019 was predicted to be 
higher than those of the previous years, especially in the middle and southern parts of the 
Sea.    
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Introduction* 
The production capacity of the marine 
ecosystems is largely impacted by 
environmental changes (Sissenwine and 
Murawski, 2004) which finally influence the 
available fisheries resources. Detecting 
physical and biological variables influencing 
the productivity along with a simulation of 
their future probable status is useful to adopt 
appropriate management strategies (Roessig 
et al., 2004; Wilsey et al., 2013). The 
remotely-sensed data have been increasingly 
used for assessing trends of environmental 
variables in the aquatic realms over the last 
decades. Satellite data are accurate, low-cost 
and easily-accessible and as such are being 

                                                             
* Corresponding author: poorbagher@ut.ac.ir 

increasingly used in modelling studies 
(Guisan and Zimmermann, 2000). Such data 
provide reliable information about the 
productivity of aquatic ecosystems on a 
global scale (Behrenfeld et al., 2006) 
enabling zonation and mapping of aquatic 
areas for different purposes including 
fisheries management and defining marine 
protected areas (Schismenou et al., 2017). 
Combining remotely sensed data and 
different modelling approaches makes it 
possible to predict the trend of habitat 
parameters, species distribution and 
abundance (Razgour et al., 2011; Gschweng 
et al., 2012; Matawa et al., 2012). 

Logistic regression is one of the 
statistical models that relate continuous 
independent variables to binary dependent 
variables. Logistic regression can be used to 
predict the probability of an event recorded 
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as presence or absence. Markov Chain (MC) 
is a modelling approach that has been used 
in different fields including land use or land 
cover alteration, urban expansion, wetland, 
plant growth, watershed management, site 
selection and coastal zone management 
(Ghosh et al., 2017). A MC model is a 
stochastic process that computes 
probabilities of changes from one state to 
another over consecutive time points. A MC 
model can only predict the magnitude of 
changes between different states in time 
intervals (Boerner et al., 1996), however, it 
is not able to find the distribution of changes 
over spatial extents (Ghosh et al., 2017). For 
this purpose, an allocation process has to be 
integrated into a MC model to allocate the 
values predicted by the model. For example, 
cellular automata modelling has been 
frequently used to alleviate this problem 
(Yassemi et al., 2008; Li et al., 2010; Liu et 
al., 2010; Jokar Arsanjani et al., 2011). It has 
been suggested that the integration of these 
two modelling approaches improves the 
reliability of final predictions (Kamusoko et 
al., 2009; Guan et al., 2011; Sang et al., 
2011). Due to the simplicity of computations 
for pixel-based data, a combination of 
logistic regression and MC modelling is a 
useful technique in studies that simulate 
geographical dynamic systems. 

The Caspian Sea is the largest inland water 

ecosystem in the world being subjected to 
numerous natural and anthropogenic 
changes including climate change, sea level 
fluctuations (Arpe et al., 2000; Renssen et al. 
2007; Ibrayev et al., 2010), invasion of 
exotic species (Kideys et al., 2008; Roohi et 
al., 2010), eutrophication (Nasrollahzadeh et 
al., 2008) and industrial waste contamination 
(de Mora et al., 2004; Askarova and 
Mussagalliyeva, 2014). The Sea supports 
commercial fish stocks, most of them being 
planktivorous pelagic fish species (Kideys et 
al., 2008). Changes in planktonic primary 
production is an important factor affecting 
fluctuations of fish stocks (Chassot et al., 
2010). Hence, investigating the alteration of 
primary production over time and space 
could be useful for the management of 
fishery resources. The present study aimed 
to use remotely-sensed environmental data 
and an integrated approach of logistic 
regression and MC modelling to examine the 
relationships between chl-a concentration 
and some environmental variables (as 
driving forces) to find probabilities of 
changes in chl-a concentrations from 2013 
to 2016. Finally, we also pursued prediction 
of chl-a concentration across the Caspian 
Sea using an allocation algorithm. The 
flowchart of the modelling steps is presented 
in Figure 1. Results of this study may be 
useful to the fishery and environmental 
managers. 

 
 

 
 

Figure 1. Flowchart of the modelling steps. 
 



Moëzzi et al. / Environmental Resources Research 8, 2 (2020)                                                                                  177 
 

Materials and Methods 
Data sets 
Environmental data of the Caspian Sea 
were downloaded from the website of the 
MODIS project, NASA 
(http://modis.gsfc.nasa.gov). Environmental 
variables comprised remote sensing 
reflectance at 645 nm (r645, sr-1) being 
considered as water turbidity (Chen et al., 
2007), aerosol angstrom coefficient (443 to 
965 nm), aerosol optical thickness at 869 
nm, organic and inorganic particulate 
carbon (mol m-3), photo-synthetically active 
radiation (Einstein m-2 day-1), remote 
sensing reflectance at 443 nm (m-1) as light 
absorption by phytoplankton, day- and 
night-time sea surface temperature (°C) and 
chl-a concentration (mg m-3) as an index of 
primary production. Annually-averaged 
data of the variables were in the NetCDF 
format and were converted to raster format 
using the raster package in R (version 
3.5.1). Two raster layers are needed to 
model temporal changes using MC. 
Therefore, environmental data of the years 
2013 and 2016 were used for predicting 
chl-a of the year 2019. Chl-a data (years 
2013 and 2016) were converted to ordinal 
data levels using their 0.33 and 0.67 
quantiles: low (chl-a < 1.936 mg m-3), 
medium (1.936 mg m-3 ≤ chl-a < 3.808 
mg m-3) and high (3.808 mg m-3 ≤ chl-a). 
 
Logistic Regression 
Based on the classification of chl-a into the 
low, medium and high levels, nine 
transitional states were defined for each 
pixel in the Caspian Sea from 2013 to 2016. 
For each transitional state of the pixels, one 
logistic regression was fitted. Environmental 
data and chl-a concentration were the 
predictors and the dependent variable, 
respectively. Hence, the nine logistic 
regressions predicted the probability of the 
specific transitional states for each pixel. 
Using the regression models and 
environmental data of the year 2016, the 
probability of each pixel to have a low, 
medium or high level chl-a concentration 
was calculated. In regression modelling, 70 
and 30% of data were randomly selected as 
training and test data, respectively. Monte 
Carlo cross-validation approach was used to 
avoid over-fitting, where modelling was 

performed 25 times and each time 75% of 
the selected data were used to fit the model 
and the rest were used to test the final model. 
The relative operating characteristic (ROC) 
method was used to assess the performance 
of the fitted models. All of the regression 
modellings was conducted using the package 
caret in R (Kuhn and Johnson, 2013). 
 
Prediction 
The approach of the present study was 
mainly based on Jokar Arsanjani et al. 
(2013) who integrated MC and logistic 
regression. The predicted values were 
allocated to the pixels using cellular 
automata. We allocated the predicted values 
to the pixels based on the highest probability 
of a specific transitional state as calculated 
by the logistic regression. 
 
The MC model 
The nine transitional states between chl-a 
levels were found by counting the pixels 
belonging to each state from 2013 to 2016 
and resulted in a transition matrix (3 × 3). 
The states of the pixels (in 2019) were 
predicted using the transition matrix 
calculated by the markovchain package in 
R. Finally, the counts of the pixels 
belonging to each chl-a concentration level 
were calculated for 2019. 
 
Allocation of predicted data to each pixel 
The counts of the cells belonged to each 
level of chl-a in 2019 (low, medium and 
high) were obtained from the MC 
modelling, however, the MC modelling was 
unable to detect the future (2019) level of 
chl-a in each pixel. The calculated 
probabilities from logistic regressions were 
used to determine the final condition of the 
pixels in 2019. For example, the low level 
of chl-a was allocated to the pixels of the 
Caspian Sea with the highest probability of 
having a low chl-a level in 2019. This 
method was conducted for other eight 
transitional states over the Caspian Sea. 
 
Results and Discussion  
Chl-a concentration classification 
Figure 2 shows the box-plot of chl-a 
concentration levels. Converting 
chlorophyll-a concentration (chl-a; mg.m-3) 
into low, medium and high classes was 
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conducted using 0.33 and 0.67 quantiles. 
The chl-a values of 0.0 to 1.936 (mg m-3) 
were considered as low level, 1.936 to 3.808 

(mg m-3) as medium level, and 
concentrations higher than 3.808 (mg m-3) as 
high level.  

 

 
Figure 2. Box-plot of chl-a concentration for the years 2013 and 2016, and their 0.33 and 0.67 quantiles. 
Dots on the plot show outliers. 
 
Logistic regression 
The logistic regression models are 
presented in Table 1. The fitted regression 
models had ROC values > 0.5. The lowest 
ROC belonged to the transitional state of 

high to medium (0.514), and the highest 
value belonged to the state no-change (low 
to low; 0.950). All ROC values of the test 
data were > 0.77.   

 
Table 1. The calculated parameters for the logistic regressions related to each transitional state between 
chl-a concentrations and ROC values for the data for model calibration and testing 

Transitional chl-a concentration 
state Sensitivity Specificity ROC 

(calibration) 
ROC 

(testing) 

Absolute 
difference of 
ROC values Form (2013) To 

(2016) 
Low Low 0.637 0.983 0.950 0.952 0.002 
Low Medium 0.772 0.763 0.862 0.876 0.014 
Low High 0.157 0.976 0.870 0.869 0.001 

Medium Low 0.080 0.998 0.862 0.829 0.033 
Medium Medium 0.074 0.983 0.764 0.773 0.009 
Medium High 0.038 0.995 0.849 0.836 0.013 

High Low Impossible to fit a model due to limited data 
High Medium 0.240 0.999 0.514 0.818 0.304 
High High 0.908 0.990 0.996 0.984 0.012 

 
MC modelling 
The transition probability matrix calculated 
based on the data of the years 2013 and 
2016 (Table 2), showed that part of the 
Caspian Sea remained unchanged, at the 
state of high chl-a concentration (H-H; > 
3.808 mg m-3) with the highest probability. 

The transition from low to medium (L-M) 
levels and remaining in the medium state 
(M-M) were the next high-probability 
states. The transition states from medium 
and high levels to low and medium levels 
(M-L; H-M), respectively, had the lowest 
probabilities. 
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Table 2. The transition probability matrix based on the pixel counts for each level of chl-a level (low, 
medium and high) from 2013 to 2016 

 
2016 

Low Medium High 

2013 

Low 0.188 0.638 0.174 

Medium 0.007 0.590 0.403 

High 0.001 0.024 0.975 
 

The transition probability matrix 
predicted by the MC model (Table 3) 
indicated that the areas of the Caspian Sea 
with high chl-a levels (i.e., high primary 
productivity) will be maintained at the same 

state in 2019. The increasing transitional 
states (i.e. transition from low and medium 
to medium and high levels, respectively; L-
M; M-H) were the most probable transitional 
states. 

 
Table 3. The transition probability matrix of the chl-a level predicted by Markov Chain (MC) model from 
2016 to 2019 

 
2019 

Low Medium High 

2016 

Low 0.040 0.500 0.459 

Medium 0.006 0.362 0.631 

High 0.001 0.038 0.960 
 

There were several missing values in the 
satellite data for some of the environmental 
predictors. Hence, it was not possible to 
calculate the probability of a given 
transitional state by a logistic regression 
model in some pixels across the Caspian 
Sea. These pixels were mainly located in 
the north of the Sea (Figure 3). The 
probability of each transitional state of chl-
a level between 2016 and 2019 showed that 
a small area of the Caspian Sea (the eastern 
coast) will continue to have low levels of 
chl-a in 2019 (Figure 3). The middle parts 
(mainly offshore areas) of the Sea have the 
potential to increase their chl-a level from 
low to medium and high levels (Figure 3). 
There was not a high probability for other 
transitional states in chl-a levels and only, 
the northern parts of the Caspian Sea 

showed a high probability for remaining in 
the high level of chl-a (Figure 3). 

The areas of the pixels estimated to have 
different chl-a levels in the Caspian Sea are 
presented in Table 4. These areas were 
calculated based on the number of pixels 
belonging to each level of chl-a 
concentration. Since there were missing 
values in the raster layers of the satellite 
data, the total area of the Caspian Sea was 
not fully covered over the years. Therefore, 
in addition to the area values, the 
percentage of the pixels for each chl-a level 
is presented in Table 4. Compared to 2013, 
a large area of the Caspian Sea was shown 
to have medium and high chl-a level in 
2019 indicating an increase in trophic state 
of the Sea. 

 
Table 4. Estimated area (km2; %) of the pixels belonging to different chl-a levels for the years 2013, 
2106 and 2019. Due to the missing values in the satellite data, the total area of the Sea is different over 
the years 

Chl-a level Low Medium High 
year km2 % km2 % km2 % 
2013 219352.06 57 78380.15 20 89701.46 23 
2016 43749.14 11 192854.63 49 158101.52 40 
2019 43997.51 13 187362.08 55 109145.35 32 
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Figure 3. The calculated probability for the transition between chl-a levels (Low: L; medium: M; High: 

H) from 2016 to 2019. Because of missing values in environmental variables, the fitted logistic 
regressions estimated no probability for the northern parts of the Caspian Sea. 

 
 

The map of chl-a level for the year 2013 
(Figure 4) showed that the Kara-Bogaz-Gol 
Bay, and the major parts of the eastern coast 
and most offshore areas of the Sea had low 
levels of chl-a. The waters near the Iranian 
coasts, Turkmenistan and Azerbaijan had 
medium levels of chl-a. The highest levels 
of chl-a were found in inshore waters of 
Kazakhstan, Russia, Iran and some points in 
Azerbaijan and Turkmenistan coasts. The 
map of chl-a for 2016 showed that most 
parts of the Caspian Sea had a medium level 
of chl-a (Figure 5). As before, the Kara-
Bogaz-Gol Bay and some parts of 
Turkmenistan and parts of the Iranian 
offshore waters had a low chl-a level. The 
coastal waters of Iran, Azerbaijan, Russia 
and Kazakhstan had the highest chl-a 
concentration. The predicted chl-a 
concentration for 2019 showed that low 
levels of chl-a in the Caspian Sea will be 
limited to the offshore areas of the middle 
and northern parts of the Sea (Figure 6). The 
greatest area of the Sea was shown to have a 

medium level of chl-a in 2019. The high chl-
a level belonged to the coasts of 
Turkmenistan and Kara-Bogaz-Gol Bay. As 
with prior years, the waters of Russia and 
Kazakhstan would have high levels of chl-a. 
Also, coastal waters of Azerbaijan would 
have high levels of chl-a. The highest chl-a 
level in the Iranian waters would occur in the 
southeast regions of the Sea.  

 During the past years, multiple 
modelling methods have been combined to 
find spatial and temporal interactions 
between components of dynamic systems 
and utilizing these relationships over time 
and space to predict upcoming situations of 
these systems (Abolhasani et al., 2016; 
Aburas et al., 2016; Azari et al., 2016; 
Berberoğlu et al., 2016; Chen et al., 2016; 
Ku, 2016; Omrani et al., 2017; Shafizadeh-
Moghadam et al., 2017). In the present 
study, we integrated logistic regression and 
Markov Chain to examine the relationship of 
chl-a concentrations of the Caspian Sea with 
remotely-sensed variables in 2013 and 2016, 
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and finally predicting spatial changes of chl-
a in 2019. This technique is not new and has 
been used to predict land surface alterations, 
such as urban expansion and land-use 
change (Jokar Arsanjani et al., 2011; Jokar 
Arsanjani et al., 2013; Ku, 2016; Palmate et 
al., 2017). However, the approach taken here 
to combine these modelling methods has not 
been used to predict changes of a given 
parameter over water bodies. The Markov 
chain model used the calculated probabilities 
of transitional states to quantify the extent of 
alterations over the whole area of the 
Caspian Sea based on the transition 
probability matrix. This matrix displayed the 
relative frequencies of transitional states at a 
certain time period (Cabral and Zamyatin, 
2009). The calculated transition probabilities 
from 2013 to 2016 indicated that there was a 
high potential for the Caspian Sea to sustain 
the medium to a high level of chl-a. In 
contrast, decreasing from high or medium 
levels of chl-a to low levels had a low 
probability. Such prediction may be 
expected because studies regarding the 
eutrophic status of the Caspian Sea is not 
promising (Nasrollahzadeh et al., 2008; 
Shahrban and Etemad-Shahidi, 2010). 
Allocation of the predicted state to each 

pixel of a map is the final step in the 
preparation of the predicted map. The 
cellular automata have been used to allocate 
the predicted condition of pixels (Jokar 
Arsanjani et al., 2011). In our study, the 
allocation process was based on the highest 
probability of a pixel to have a specific 
transitional state. This method; while having 
the advantage of requiring no rule, in 
contrast to cellular automata, was very time-
consuming. A proper algorithm may 
alleviate this problem.  

Due to incomplete coverage of satellite 
data for the predictor variables, the logistic 
regression failed to calculate the transitional 
probabilities of the northern parts of the Sea. 
However, the major part of the Sea had the 
required data for modelling. The predicted 
chl-a level (for 2019) shows a lot of 
variability compared with those of 2016. 
Changes in the environmental conditions 
such as depth (Longhurst, 1995; Kopelevich 
et al., 2004), pycnocline establishment in 
deep waters (Leonov, 2002) and discharges 
of the Volga River into the northern area 
(Leonov, 2002), have been considered as an 
explanation for different chl-a concentration 
in the Sea. 

 

 
Figure 4. Map of chl-a level in the Caspian Sea for the year 2013. 
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Figure 5. Map of chl-a level in the Caspian Sea for the year 2016. 

 

 
Figure 6. Map of predicted chl-a level of the Caspian Sea for the year 2019. Due to the lack of data for 
some environmental variables, chl-a level was not predicted for the northern parts of the Caspian Sea. 

 
Conclusion 
An approach integrating two modelling 
techniques including logistic regression and 
Markov Chain was used in this study to 
predict alteration of chl-a concentrations (as 
an index of primary production) over time 
and space in the Caspian Sea using 
remotely sensed data. This approach 
produced projections on the primary 

production in 2019 based on the states in 
the last years. Our results indicate that the 
Caspian Sea will face high productivity 
over nearly the whole of its realm. The lack 
of full coverage of satellite data, especially 
for the northern boundaries of the Caspian 
Sea led to an incomplete extent of predicted 
range at the final time point. 
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