Almalki, S.J. and Nadarajah, S. 2014. Modifications of the Weibull distribution: A review, Reliability Engineering and System Safety. 124, 32-55.
Ambrozic, M. and Vidovic, K. 2007. Computation of the parameters of the Weibull distribution for estimating the bending strength of corrugated roofing sheets. Materiali in Tehnologije. 41, 179-184.
Bailey, R.L. and Dell, T. 1973. Quantifying diameter distributions with the Weibull function. Forest Science. 19, 97-104.
Balakrishnan, N. and Kundu, D. 2019. Birnbaum-Saunders distribution: A review of models, analysis, and applications. Applied Stochastic Models in Business and Industry. 35, 4-49.
Barros, M., Paula, G.A. and Leiva, V. 2008. A new class of survival regression models with heavy-tailed errors: Robustness and Diagnostics, Lifetime Data Analysis. 14, 316-332.
Bartolucci, A.A., Singh, K.P., Bartolucci, A.D. and Bae, S. 1999. Applying medical survival data to estimate the three-parameter Weibull distribution by the method of probabilityweighted moments. Mathematics and Computers in Simulation. 48, 385-392.
Birnbaum, Z.W. and Saunders, S.C. 1969. A new family of life distributions. Journal of Applied Probability. 6, 319-327.
Cao, Q.V. 2004. Predicting parameters of a Weibull function for modeling diameter distribution. Forest science. 50, 682-685.
Celeux, G. 1985. The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly. 2, 73-82.
Cheng, R. and Amin, N. 1983. Estimating parameters in continuous univariate distributions with a shifted origin, Journal of the Royal Statistical Society: Series B (Methodological). 45, 394-
403.
Cohen, C.A. and Whitten, B. 1982. Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theory and Methods. 11, 2631-2656.
Cousineau, D. 2009. Nearly unbiased estimators for the three-parameter Weibull distribution with greater efficiency than the iterative likelihood method. British Journal of Mathematical and Statistical Psychology. 62, 167-191.
Cran, G. 1988. Moment estimators for the 3-parameter Weibull distribution. IEEE Transactions
on Reliability. 37, 360-363.
Dempster, A.P., Laird, N.M. and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological). 1-
38.
Dumonceaux, R. and Antle, C.E. 1973. Discrimination between the log-normal and the Weibull distributions. Technometrics. 15, 923-926.
Gove, J.H. and Fairweather, S.E. 1989. Maximum-likelihood estimation of Weibull function parameters using a general interactive optimizer and grouped data. Forest Ecology and Management. 28, 61-69.
Green, E.J., Roesch, J.F.A., Smith, A.F. and Strawderman, W.E. 1994. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data. Biometrics. 50, 254-269.
Hassani, H., Kalantari, M. and Ghodsi, Z. 2019. Spatial gradient of bicoid is well explained by Birnbaum-Saunders distribution. Medical Hypotheses. 122, 73-81.
Johnson, N.L., Kotz, S. and Balakrishnan, N. 1994. Continuous Univariate Distributions, John Wiley & Sons. Kundu, D., Kannan, N. and Balakrishnan, N. 2008. On the hazard function of Birnbaum-
Saunders distribution and associated inference, Computational Statistics and Data Analysis. 52, 2692- 2702.
Kuo-Chao, L., Keng-Tung, W. and Chien-Song, C. 2009. A new study on combustion behavior of pine sawdust characterized by the Weibull distribution. Chinese Journal of Chemical Engineering. 17, 860-868.
M . Teimouri and C. Quang / Environmental Resources Research 8, 2 (2020) 107
Lai, C.D., Murthy, D. and Xie, M. 2006. Weibull Distributions and Their Applications, Springer. Handbook of Engineering Statistics. 63-78.
Lei, Y. 2008. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis). Journal of Forest Science. 54, 566-71.
Leiva, V. 2015. The Birnbaum-Saunders Distribution. Academic Press. Leiva, V. Barros, M., Paula, G.A. and Galea, M. 2007. Influence diagnostics in log-Birnbaum-
Saunders regression models with censored data. Computational Statistics and Data Analysis. 51, 5694-5707.
Lio, Y.L. and Park, C. 2008. A bootstrap control chart for Birnbaum-Saunders percentiles.
Quality and Reliability Engineering International. 24, 585-600.
Little, R.J. and Rubin, D.B. 2004. Incomplete data. Encyclopedia of Statistical Sciences. 5.
Liu, C., and Rubin, D.B. 1994. The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika. 81, 633-648.
Maltamo, M., Kangas, A., Uuttera, J., Torniainen, T. and Saramäki, J. 2000. Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands. Forest Ecology and Management. 133, 263-
274.
McLachlan, G. and Krishnan, T. 2007. The EM Algorithm and Extensions, volume 382. John Wiley and Sons.
Meng, X.L. and Rubin, D.B. 1993. Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika. 80, 267-278.
Merganič, J. and Sterba, H. 2006. Characterisation of diameter distribution using the Weibull function: method of moments. European Journal of Forest Research. 125, 427-439.
Murthy, D.P., Xie, M. and Jiang, R. 2004. Weibull Models, volume 505. John Wiley and Sons. Nagatsuka, H., Kamakura, T. and Balakrishnan, N. 2013. A consistent method of estimation for the three-parameter Weibull distribution. Computational Statistics and Data Analysis. 58, 210- 226.
Podlaski, R. 2008. Characterization of diameter distribution data in near-natural forests using the Birnbaum-Saunders distribution. Canadian Journal of Forest Research. 38, 518-527.
R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL: https://www.R-project.org/.
Schmidt, L.N., Sanquetta, M.N.I., McTague, J.P., da Silva, G.F., Fraga Filho, C.V., Sanquetta, C.R., Soares Scolforo, J.R. 2020. On the use of the Weibull distribution in modeling and describing diameter distributions of clonal eucalypt stands. Canadian Journal of Forest Research. Schworer, A. and Hovey, P. 2004. Newton-Raphson versus Fisher scoring algorithms in calculating maximum likelihood estimates. Dayton.
Stankova, T.V. and Zlatanov, T.M. 2010. Modeling diameter distribution of Austrian black pine (Pinus nigra arn.) plantations: a comparison of the Weibull frequency distribution function and percentile-based projection methods, European Journal of Forest Research. 129, 1169-
1179.
Steen, P. and Stickler, D. 1976. A sewage pollution study of beaches from Cardiff to Ogmore.
UWIST, Dept. of Applied Biology Report, Cardiff.
Teimouri, M., Doser, J.W. and Finley, A.O. 2020. Forestfit: An R package for modeling plant size distributions. Environmental Modelling and Software. 104668.
Teimouri, M., Hoseini, S.M. and Nadarajah, S. 2013 a. Comparison of estimation methods for the Weibull distribution. Statistics. 47, 93-109.
Teimouri, M., Hosseini, S.M. and Nadarajah, S., 2013 b. Ratios of Birnbaum-Saunders random variables, Quality Technology and Quantitative Management. 10, 457-481.
Teimouri, M. 2020. Bias corrected maximum likelihood estimators under progressive type-I
interval censoring scheme, https://doi.org/10.1080/03610918.2020.1819320.
M. Teimouri and C. Quang 108 / Environmental Resources Research 8, 2 (2020)
Zhang, L. and Liu, C. 2006. Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models. Journal of Forest Research. 11, 369-372.
Zhu, H.P., Xia, X., Chuan, H.Y., Adnan, A., Liu, S.F. and Du, Y.K., 2011. Application of Weibull model for survival of patients with gastric cancer. BMC Gastroenterology. 11, 1.