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Abstract1 
For a given sample of grouped and ungrouped (raw) data, the maximum likelihood (ML) 
estimator is obtained using  iterative   algorithms such   as  Newton -Raphson (NR), which 
may not be converged always. Three-parameter Birnbaum-Saunders (BS) and Weibull 
distributions are frequently used in forestry and environmental sciences. In this study, we 
suggest using the expectation-maximization (EM) algorithm to estimate the parameters of 
BS and Weibull distributions when these models are fitted to grouped data. The EM 
algorithm is an iterative procedure that is used to obtain the ML estimator and always 
converges, whereas it is shown through simulation that the NR method may fail to converge. 
We demonstrate through three illustrations that the EM algorithm applied to the grouped data 
works efficiently. For the first illustration, the ML estimates of the grouped data exist and 
they are almost the same as the output of the EM algorithm. In the second and third real data 
examples that are of small sizes, the ML estimator does not exist for the ungrouped data but, 
we find it using the EM algorithm applied to the grouped data.   
 
Keywords: Birnbaum-Saunders distribution,  diameter modelling,  expectation-maximization 
algorithm,  Forest management,  Grouped data,  Maximum likelihood method,  Weibull 
distribution. 
 
 

 
Introduction 

 The application of the Weibull model for 
characterizing real phenomena has a long 
history. It was originally introduced by 
Waloddi Weibull for modeling the 
distribution of breaking strength of the 
materials. Since then it has applied in a wide 
range of applications in many fields of study. 
For example, it has received much attention 
in forestry (Bailey and Dell, 1973; Maltamo 
et al., 2000; Cao, 2004;  Merganiand and 
Sterba, 2006; Zhang and Liu. 2006; Lei, 
2008; Kuo-Chao et al., 2009; Stankova and 
Zlatanov, 2010; Schmidt et al., 2020), 
engineering (Johnson et al., 1994; Bartolucci 
et al., 1999; Murthy et al., 2004; Lai et al., 
2006; Ambrozic and Vidovic, 2007; 
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Teimouri et al., 2013a; Almalki and 
Nadarajah, 2014), and medicine (Zhu et al. 
2011). Due to its popularity, statistical 
inference about the parameters of the 
Weibull model also received much attention 
in the literature. We refer readers to Green et 
al. (1994) (for Bayesian method), Cohen and 
Whitten (1982) (for modified ML) and 
modified moment method), Cran(1988) (for 
method of moment), Cousineau (2009) (for 
weighted ML method), Teimouri et al. 
(2013a) (for the linear combination of order 
statistics of three-parameter Weibull model), 
and Nagatsuka et al. (2013 (for ratio of order 
statistics). The Birnbaum-Saunders (BS) 
model was introduced by Birnbaum and 
Saunders (1969) for modelling the failures 
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due to cracks in materials. It has been used 
by researchers from different fields of study. 
For example, the BS distribution is used in 
forestry (Podlaski 2008), in reliability 
analysis (Leiva et al., 2007; Barros et al., 
2008; Kundu et al., 2008; Lio and Park, 
2008; Teimouri et al., 2013b) and biology 
(Hassani et al. 2019). For comprehensive 
information about the theory and 
applications of BS distribution, we refer 
readers to Balakrishnan and Kundu (2019) 
and  Leiva (2015). Grouped data are 
frequently used in biological sciences. 
Instead of raw observations, data are 
grouped into discrete classes. Suppose that n 
observations of tree diameter at breast height 
(DBH) come independently from a family 
with distribution function (cdf) 𝐺(. |Θ), 
where Θ = (𝜃1, … , 𝜃𝑑)𝑇 is is the family 𝑑-
dimensional parameter vector. Furthermore, 
suppose data are classified into 𝑚 distinct 
groups of the form [𝑟𝑖−1, 𝑟𝑖), for 𝑖 =
1, … , 𝑚. So, the likelihood function of the 
grouped data is given by by  

𝐿(Θ)

=
𝑛!

𝑓1! 𝑓2! … 𝑓𝑚!
∏

𝑚

𝑖=1

[𝐺(𝑟𝑖|Θ)

− 𝐺(𝑟𝑖−1|Θ)]𝑓𝑖 ,           

 (1) 

 
where 𝐺(𝑟0|Θ) = 0, and 𝑓𝑖 is frequency of 
the 𝑖-th group such that 𝑛 = ∑𝑚

𝑖=1 𝑓𝑖. The 
ML estimator of Θ, is obtained by 
maximizing Equation (1). Iterative methods 
such as Newton-Raphson (NR) are often 
used to numerically perform maximization. 
If the NR method encounters a local 
extremum, then this method cannot find the 
true solution. In another case, if the log-
likelihood function is malformed, then the 
NR method could put itself into an infinite 
loop (Schworer and Hovey, 2004). 
Furthermore, when the initial values for the 
NR method are far away from the true 
parameter (which is where the log-
likelihood function reaches its global 
maximum), or when the log-likelihood 
function at the initial values becomes large, 
then there is no guarantee that the NR 
method will converge. In this study, we 
derive the estimators of Θ using the 
expectation maximization (EM) algorithm. 

The EM algorithm is an iterative procedure 
and always converges (Little and Rubin, 
2004; McLachlan and Krishnan, 2007). 
Each iteration of the EM algorithm 
guarantees increase of the log-likelihood 
value. Eventually, a local maximum of the 
log-likelihood function is reached. It is 
shown that the time for convergence is much 
longer than that of the NR method, (Little 
and Rubin, 2004). Because the EM method 
does not necessarily maximize the 
likelihood function, the estimates of Θ using 
the EM algorithm can be used as the initial 
values for the iterative NR method that 
should lead to the ML estimators. The 
probability density function (pdf) of Weibull 
and BS distributions are given,respectively, 
by the following.   
 
𝑔(𝑥|Θ) =

𝛾

𝛽
(

𝑥−𝛼

𝛽
)𝛾−1exp{−(

𝑥−𝛼

𝛽
)𝛾}, (2) 

 

𝑔(𝑥|Θ) =
√

𝑥−𝛼

𝛽
+√

𝛽

𝑥−𝛼

2𝛾(𝑥−𝛼)
𝜙(

√
𝑥−𝛼

𝛽
−√

𝛽

𝑥−𝛼

𝛾
), (3) 

 
where Θ = (𝛾, 𝛽, 𝛼)𝑇 with 𝛾 > 0, 𝛽 > 0, 
𝑥 > 𝛼 ≥ 0, and 𝜙(. ) denots the standard 
normal pdf. The cumulative distribution 
function (cdf) of the Weibull and BS 
distributions are given, respectively, by 
 
𝐺(𝑥|Θ) = 1 − exp{−(

𝑥−𝛼

𝛽
)𝛾}, (4) 

 

𝐺(𝑥|Θ) = Φ[
1

𝛾
(√

𝑥−𝛼

𝛽
− √

𝛽

𝑥−𝛼
)]. (5) 

 
   The aim of this paper is to derive 
estimators for the parameters of the Weibull 
and BS distributions when these models are 
fitted to grouped data.  
 
Materials and Methods 
 
Materials  
   We use three samples to demonstrate the 
performance of the EM algorithm compared 
with the ML method in estimating the 
parameters of the BS and Weibull 
distributions. In the first example the real 
data were originally grouped while for the 
second and third example, the observations 
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were originally ungrouped but were treated 
them as grouped data in the evaluation. This 
study is about the tree’s diameter at breast 
height (DBH). Characterizing the 
distribution of DBH received much attention 
in forestry for the purpose of modeling the 
forest vertical structure, forest dynamics, 
and comparing forest stands. Table 1 
presents the observed DBH (in inch) studied 
by Gove and Fairweather (1989). 
 

Table  1: Tree diameter data  
Class 

number 
Class 

(in inch) 
frequency 

1 (2-3.9] 9 
2 (4-5.9] 60 
3 (6-7.9] 89 
4 (8-9.9] 90 
5 (10-11.9] 77 
6 (12-13.9] 41 
7 (14-15.9] 19 

  
   In the second sample, we focus on the 
beach pollution data in South Wales reported 
by Steen and Stickler (1976). This set of data 
shows the pollution level (number of 
coliform per 100 ml) on 20 days over a 5-
week period (Cheng and Amin, 1983) and is 
given in Table 2.  
 
Table  2: Number of coliform per 100 ml on 20 

days over a 5-week period.  
Week 1 Week 2 Week 3 Week 4 Week 5 
1364  2154  2236  2518  2527 
2600  3009  3045  4109  5500 
5800  7200  8400  8400  8900 
11500  12700  15300  18300  20400 

 
   Finally, we analyze the maximum flood 
level (in millions of cubic feet per second) 
for the Susquehanna River of Harrisburg 
reported by Dumonceaux and Antle (1973). 
This set of data is given in Table 3. 
 
Table  3: Maximum flood level data in millions 

of cubic feet per second. 
   

 0.654  0.613  0.315  0.449  0.297 
0.402  0.379  0.423  0.379  0.3235 
0.269  0.740  0.418  0.412  0.494 
0.416  0.338  0.392  0.484  0.265 

 

Methods 
For grouped data, let 𝐺(. |Θ) denote the cdf 
of the family, the ML estimator is obtained 
by maximizing the logarithm of the 
likelihood function (1). For DBH data, let 𝑓𝑖 
indicate on the number of recorded DBHs in 
interval (𝑟𝑖−1, 𝑟𝑖], for 𝑖 = 1, … , 𝑚. Then, the 
ML estimator of Θ is obtained by 
maximizing  𝑙(Θ) = log𝐿(Θ) with respect to 
Θ. We have  
 
 𝑙(Θ) ∝ ∑𝑚

𝑖=1 𝑓𝑖log[𝐺(𝑟𝑖|Θ) − 𝐺(𝑟𝑖−1|Θ)]. 
  
   The EM algorithm (Dempster et al., 1977) 
is known as the popular method for 
computing the ML estimators when we 
encounter the incomplete data problem. In 
other words, the use of the EM algorithm 
involves cases that we are dealing with latent 
variables, provided that the statistical model 
is formulated as a missing data problem. In 
what follows, we give a brief description of 
the EM algorithm. Let 𝝃, 𝒁, and 𝝎 denote 
the complete, unobservable variable, and 
observed data, respectively (complete data 
consists of observed values and 
unobservable variables, i.e., 𝝃 = (𝒁, 𝝎)). 
The EM algorithm works by maximizing the 
conditional expectation 𝑄 = 𝑄(Θ|Θ(𝑡)) =
𝐸(𝑙𝑐(Θ; 𝝃)|𝝎, Θ(𝑡)) of the complete data 
log-likelihood function, given the observed 
data and a current estimate Θ(𝑡) of the 
parameter vector Θ where 𝑙𝑐(Θ; 𝝃) denotes 
the log-likelihood function for the complete 
data. Each iteration of the EM algorithm 
consists of two steps: E-step (i.e., computing 
𝑄 at the 𝑡-th iteration) and M-step ( 
maximizing 𝑄 with respect to Θ to get 
Θ(𝑡+1)). The E-step and M-step are repeated 
until convergence occurs. Suppose 𝑛 
independent realizations come from a 
distribution with pdf 𝑔(. |Θ), in which Θ is 
the unknown parameter vector. Further, let 
𝑋𝑖𝑗, for 𝑗 = 1, … , 𝑓𝑖, denote the independent 
and identically distributed (iid) random 
variables within subinterval (𝑟𝑖−1 , 𝑟𝑖], for 
𝑖 = 1, … , 𝑚. The complete data log-
likelihood function is  
 
𝑙𝑐(Θ) ∝ ∑𝑚

𝑖=1 ∑𝑓𝑖
𝑗=1 log𝑔(𝑋𝑖𝑗|Θ), (6) 
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where ∑𝑚
𝑖=1 𝑓𝑖 = 𝑛. In the EM algorithm 

framework, 𝑋𝑖𝑗 (missing data within 
subinterval (𝑟𝑖−1, 𝑟𝑖]) is regarded as the 𝑗-th 
realization within 𝑖-th group. So, analyzing 
grouped data can be considered as solving an 
incomplete data problem in which 𝝎 =
(𝑓1, … , 𝑓𝑚) is vector of observed values and 
𝒁 = (𝑋𝑖1, … , 𝑋𝑖𝑓𝑖

) is vector of unobservable 
variables, for 𝑖 = 1, … , 𝑚. The ML and EM 
methods are employed to estimate the 
parameters of the BS and Weibull models 
fitted to the grouped and ungrouped data. 
Also, we performed a simulation to check 
the robustness of the ML and EM methods 
with respect to initial values. For obtaining 
these estimators the package ForestFit 
(Teimouri et al., 2020) developed for R (R 
Core Team, 2018) environment is uded. 
 
Estimation methods for the Weibull 
distribution 
  The ML and EM methods described in the 
previous section are employed to estimate 
the parameters of the three-parameter 
Weibull distribution when this model is 
fitted to the grouped data. The log-likelihood 
function, 𝑙(Θ), of the three-parameter 
Weibull distribution is given by 
   
𝑙(Θ) ∝ ∑𝑚

𝑖=1 𝑓𝑖log{𝐺(𝑟𝑖|Θ) − (𝑟𝑖−1|Θ)}, (7) 
 
 where 𝐺(. |Θ) is given in (4) and Θ =
(𝛾, 𝛽, 𝛼)𝑇 , 𝛼 ≤ 𝑟0 < 𝑟1 < ⋯ < 𝑟𝑚. Details 
for deriving the estimators of Θ using ML 
and EM methods are given in Appendices A 
and B, respectively. 
  
Estimation methods for the BS distribution 
  In this section, we derive estimators for 
parameters of the BS distribution when this 
model is fitted to grouped data using ML and 
EM methods. Suppose 𝑛 observations that 
follow the BS distribution with pdf given in 
(3) are discretized into 𝑚 distinct intervals 
with end-points 𝑟1, … , 𝑟𝑚. The ML estimator 
Θ̂ = (𝛾, �̂�, �̂�)𝑇, of the parameter vector Θ =
(𝛾, 𝛽, 𝛼)𝑇  is obtained by maximizing the 
log-likelihood function, 𝑙(Θ), of the three-
parameter BS distribution given by   

 𝑙(Θ) ∝
∑𝑚

𝑖=1 𝑓𝑖log{𝐺(𝑟𝑖|Θ) − 𝐺(𝑟𝑖−1|Θ)}, (8) 

 
 where 𝐺(. |Θ) is given in (5) and 𝛼 ≤ 𝑟0 <
𝑟1 < ⋯ < 𝑟𝑚 < ∞. Detailes for deriveing 
the ML and EM estimators of Θ are not given 
here for space reasons. 
  
Simulation study for checking convergence 
of th NR method 
 
The reason for checking the convergence via 
simulation is that the NR method is sensitive 
to the initial values for maximizing the right-
hand side of (8) or (7). Simulation is run 
1000 times and in each run, the elements of 
the parameter vector Θ = (𝛾, 𝛽, 𝛼)𝑇 of the 
BS distribution come from uniform 
distributions of the ranges (0.1,10) , (0.1,20), 
and (0,30), respectively. The simulated 
observations in each run were grouped into 
separate classes of size 10, 20, 30, and 40. 
 
Results 
To obtain the ML estimator, the EM 
estimator is used as the initial values. The 
Anderson-Darling (AD) and Chi-square 
(Chi-sq)  statistics  were  used  to  determine 
which of these distributions fitted the DBH 
data better. Details for computing the AD 
and Chi-sq statistics are given in Teimouri 
(2020). For sample one, estimated 
parameters as well as the goodness-of-fit 
(GOF) statistics are given in Table 4. The 
estimated parameters are almost the same of 
those obtained by Gove and Fairweather  
(1989) namely 𝛾 = 2.55, �̂� = 7.776 , and 
�̂� = 2. 

 

   Table  4: Estimated parameters and GOF 
statistics when Weibull distribution is fitted to 
sample 1 (DBH data).    

 
Method 

Estimator GOF statistics 
𝛾 �̂� �̂� AD Chi-sq 

ML 2.610 7.771 1.999 29.635 5.165 
EM 2.578 7.687 2.077 29.716 5.197 

 
In the case of second sample, for the 
ungrouped data, the ML estimator of the 
parameters of a Weibull distribution fitted to 
the pollution data breaks down. The partially 
log-likelihood function, i.e., �̂�(𝛼) =
log𝐿(Θ𝑀𝐿) where Θ𝑀𝐿 = (𝛾𝑀𝐿 , 𝛽𝑀𝐿 , 𝛼)𝑇  is 
shown in figure 1(a).  
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Figure 1: Partially log-likelihood functions for 
the beach pollution data. (a): the partially log-
likelihood function �̂�(𝛼) based on ML method 
applied to ungrouped data and (b) the partially 
log-likelihood function �̃�(𝛼) based on the EM 
algorithm applied to grouped data with 3 classes. 
 

 
Figure 2: Histogram of the beach pollution data. 
Superimposed are the fitted Weibull pdfs whose 
parameters are estimated through EM algorithm 
applied to grouped beach pollution data into 5 
classes. It should be noted that both pdfs coincide 
with each others. 
 
 As it is seen from Figure 1(a), the ML 

estimator does not exist since the partially 
maximized log-likelihood function has no 
local maximum (Cheng and Amin, 1983). If 
data are grouped into 3 classes, �̃�(𝛼) =
log𝐿(Θ𝐸𝑀) where Θ𝐸𝑀 = (𝛾𝐸𝑀 , 𝛽𝐸𝑀 , 𝛼)𝑇 , 
as shown in Figure 1(b), has a global 
maximum. The EM and ML estimators are 
Θ̂ = (1.3555,7020.8200,1364)𝑇 and Θ̂ =
(1.3548,7018.3900,1363.8800)𝑇, rspecti-
vely. For this, the EM estimator are used as 
the initial values to obtain the ML estimator. 
It is clear that the ML estimator of the three-
parameter Weibull model breaks down and 
so the EM algorithm can find the ML 
estimator when data if  data are grouped. The 
fitted Weibull distribution whose parameters 
are estimated via the EM and ML methods 
applied to the grouped beach pollution data 
into 5 classes are shown in Figure 2. 
   For the third sample of ungrouped 
maximum flood level data, the ML estimator 
for the BS distribution fitted to the breaks 
down. The partially log-likelihood function, 
i.e., �̂�(𝛼) = log𝐿(Θ𝑀𝐿) where Θ𝑀𝐿 =
(𝛾𝑀𝐿 , 𝛽𝑀𝐿 , 𝛼)𝑇  is shown in Figure 3(a). As it 
is seen, the ML estimator does not exist since 
the partially maximized log-likelihood 
function has no local maximum. Based on 
data grouped into 3 classes, the graph of 
�̃�(𝛼) = log𝐿(Θ𝐸𝑀) has   global    maximum 
as shown in   f igure 3(b) where Θ𝐸𝑀 =
(𝛾𝐸𝑀 , 𝛽𝐸𝑀 , 𝛼)𝑇 . Here, 𝛾𝐸𝑀  and 𝛽𝐸𝑀 are 
estimators of 𝛾 and 𝛽 via the EM algorithm. 
The EM and ML estimators are Θ̂ =
(0.5719,0.1689,0.2149)𝑇 and Θ̂ =
(0.9028,0.1054,0.2571)𝑇, respectively. 
Also, the EM estimator are used as the initial 
values in order to obtain the ML estimator. 
This example shows that if the ML estimator 
of the three-parameter Weibull distribution 
breaks down, then the EM algorithm can 
find the ML estimator when data are treated 
as   grouped.  This   example   reveals   that 
if ML estimator for BS distribution breaks 
own,   then   by    grouping    the   originally 
ungrouped data, we can always find the EM 
and maybe the ML estimator of the 
parameters. The fitted BS distribution whose 
parameters are estimated via the EM and ML 
methods applied to the grouped maximum 
flood level data into 3 classes are shown in 
Figure 4. 
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Figure 3: Partially log-likelihood function for 
the maximum flood level data. (a): the partially 
log-likelihood function �̂�(𝛼) based on ML 
method applied to ungrouped data and (b) the 
partially log-likelihood function �̃�(𝛼) based on 
the EM algorithm applied to grouped data with 3 
classes. 

 
Figure 4: Histogram of the maximum flood level 
data. Superimposed are fitted BS pdfs whose 
parameters are estimated through EM algorithm 
and ML method applied to maximum flood level 
data grouped into 3 classes. 
 
A simulation study was conducted on the 

Weibull distribution, with parameters 𝛾, 𝛽, 
and 𝛼 following uniform distributions   of 
ranges (0.15,15), (0.1,10), and (0,30), 
respectively. The results are given in Table 
5. It is worth noting that since the EM 
method always converged, we do not 
consider it in simulation study. In what 
follows, the inferential methods for BS and 
Weibull distributions will be given and then 
these methds are used to model three sets of 
real data described in Material section. The 
simulation results, i.e., the percentage of 
repetitions that the NR method converged 
truly, are given in Table 4.  

 
 
Table  4: Percentage of repetitions that NR 
method truly converged for the BS distribution. 
The dash “-”, sign in each cell indicates that the 

simulation was not performed for that 
combination of number of classes and sample 
size. 

  
                 Sample size 
Number of 

classes 
50 100  250 500  

5  81%   77%   80%   75% 
10  84%   73%   76%   72% 
20  82%   74%   74%   70% 
40  -   -   -   71% 

 

 
Table  5: Percentage of repetitions that NR 
method truly converged for the Weibull 
distribution. The dash “-”, sign in each cell 

indicates that the simulation was not performed 
for that combination of number of classes and 
sample size. 

 
      Sample size 

Number of 
classes 

50 100  250 500 

5  39%   36%   34%   33% 
10  38%   35%   35%   32% 
20  35%   33%   32%   30% 
40  -   -   -   33% 

 
 
Discussion  
 
Here, we give methods for computing the 
ML estimators of the parameters of the 
three-parameter BS and Weibull 
distributions fitted to the ungrouped and 
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grouped data. Suppose 𝑥1, … , 𝑥𝑛 denote a 
sample of 𝑛 independent realizations coming 
from either three-parameter BS or Weibull 
distributions. We suggest the algorithm 
given by the following for estimating the 
parameters of these families. 
   
 1.  Classify the data into 𝑚 separate groups 
with lower bounds 𝑟0, 𝑟1, … , 𝑟𝑚 where 𝑟0 =
min{𝑥1, … , 𝑥𝑛}, 𝑟𝑚 = max{𝑥1, … , 𝑥𝑛}, and 
frequency of each group is 𝑓𝑖, for 𝑖 =
1, … , 𝑚. A  schematic  representation  of the 
grouping procedure is shown in Table 7;  
2.  We suggest that 𝑚 = 3 for 𝑛 ≤ 20 , and 
3 ≤ 𝑚 ≤ 𝑛/8 otherwise;  
3.  Apply the EM algorithm as described in 
Appendices B and D for estimating the 
parameters of the the three-parameter BS 
and Weibull distributions, respectively;  
 
   Further study shows that grouping the 
pollution and maximum flood level data into 
4, 5, or more classes yields still the �̃�(𝛼) 
unimodal but estimations based on EM 
algorithm are slightly different. The above 
algorithm is very useful when a location 
family of statistical distributions that does 
not satisfy the regularity conditions (i.e., the 
dependency the support of random variable 
on the parameter) is fitted to the ungrouped 
data. If the ML estimator breaks down, we 
use the estimator obtained through the EM 
algorithm as described by the above, 
otherwise we use the EM estimator as the 
initial values for the NR method to obtain the 
ML estimator whose methodology is described 
in Appendices A and C for three-parameter 
BS and Weibull distributions, respectively. 
When data are given in grouped form as 
shown in Table 7, we suggest to use first the 
EM algorithm to estimate the parameters and 
then use the estimated parameters as the 
initial values for NR method for computing 
the ML estimator.  
 

 
Conclusion 
 
We have carried out a simulation study and 
discovered that percentage of failed attempts 
to reach convergence through the Newton-
Raphson (NR) method is considerable (say, 

on the average 25% for the Birnbaum-
Saunders (BS) distribution and 65% for the 
Weibull distribution) when these models 
fitted to the raw or ungrouped data. Also, 
under some situations, the ML estimator 
may break down. In both cases, either NR 
method does not converge or maximum 
likelihood (ML) estimator breaks down, we 
suggest using the expectation-maximization 
(EM) algorithm or ML method for 
estimating parameters of the three-parameter 
BS and Weibull distributions when these 
models are fitted to the grouped data. If ML 
estimator exists, the estimated parameters 
through EM algorithm or ML method 
applied to the grouped data can be used as 
the initial values for the NR method to obtain 
the ML estimator. Otherwise, the EM 
estimator of the grouped data can be 
considered as the desired estimators. We 
have demonstrated the performance of the 
EM algorithm by three real examples 
including tree’s diameter at breast height 

(DBH), water pollution level, and maximum 
flood level. For the first example, the 
developed EM algorithm for grouped data 
revealed that the Weibull model outperforms 
the BS distribution for DBH modelling. In 
the case of the second and the third 
examples, the ML estimator breaks down 
but the EM algorithm works efficiently. The 
number of classes for turning the ungrouped 
data into grouped data can be considered as 
an interesting problem for future work. 
However, as a rule of thumb, we suggested 
using 𝑚 = 3 for 𝑛 ≤ 20, and 3 ≤ 𝑚 ≤ 𝑛/8  
otherwise. The EM algorithm presented in 
this work can be applied to obtain the ML 
estimators for the parameters of a 
distribution fitted to ungrouped data when 
the ML estimators break down. 
 
Appendix A: Estimation parameters of 
the   Weibull   distribution   fitted   to  the 
grouped data using the ML method 
 
 The log-likelihood function of the three-
parameter Weibull distribution with cdf 
given in (4) is given by 

 
 𝑙(Θ) ∝ ∑𝑚

𝑖=1 𝑓𝑖log[exp{−(
𝑟𝑖−1−𝛼

𝛽
)𝛾} −

exp{−(
𝑟𝑖− 𝛼

𝛽
)𝛾}]. 

(9) 
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The ML estimators of the 𝛾, 𝛽, and 𝛼 are 
obtained by solving simultaneously the first 
derivatives of right-hand side of (9) with 
respect to 𝛾, 𝛽, and 𝛼, respectively. It 
follows that 
 
 𝜕𝑙(Θ)

𝜕𝛾
= ∑𝑚

𝑖=1
𝑓𝑖

𝑑𝐺𝑖(Θ)
[(

𝑟𝑖−𝛼

𝛽
)𝛾 log (

𝑟𝑖−𝛼

𝛽
)) 

× exp{(
𝑟𝑖−1 − 𝛼

𝛽
)𝛾} − (

𝑟𝑖−1 − 𝛼

𝛽
)𝛾 × 

 log(
𝑟𝑖−1−𝛼

𝛽
)exp{(

𝑟𝑖−𝛼

𝛽
)𝛾}] = 0,        (10) 

 𝜕𝑙(Θ)

𝜕𝛽
=

𝛾

𝛽
∑𝑚

𝑖=1
𝑓𝑖

𝑑𝐺𝑖(Θ)
[(

𝑟𝑖−1−𝛼

𝛽
)𝛾exp{(

𝑟𝑖−𝛼

𝛽
)𝛾} 

 −(
𝑟𝑖−𝛼

𝛽
)𝛾exp{(

𝑟𝑖−1−𝛼

𝛽
)𝛾}] = 0,        (11) 

 𝜕𝑙(Θ)

𝜕𝛼
=

𝛾 ∑𝑚
𝑖=1

𝑓𝑖

𝑑𝐺𝑖(Θ)
[

1

(𝑟𝑖−1−𝛼)
(

𝑟𝑖−1−𝛼

𝛽
)𝛾 × 

exp{(
𝑟𝑖 − 𝛼

𝛽
)𝛾} −

1

(𝑟𝑖 − 𝛼)
(
𝑟𝑖 − 𝛼

𝛽
)𝛾 × 

 exp{(
𝑟𝑖−1−𝛼

𝛽
)𝛾}] = 0,                        (12) 

 
where 
 

𝑑𝐺𝑖(Θ) = exp{(
𝑟𝑖 − 𝛼

𝛽
)𝛾}

− exp{(
𝑟𝑖−1 − 𝛼

𝛽
)𝛾}. 

 
Solving simultaneously Equations (10), (11), 
 and (12), yields  the  ML  estimators  of  the 
parameters 𝛾, 𝛽, and 𝛼. We use the  optim (,)  
command in R environment for this aim.  
 
 
Appendix B: Estimation parameters of 
the   Weibull   distribution   fitted   to  the 
 grouped data using the EM algorithm 
 The complete data log-likelihood function 
is given by 
 
 𝑙𝑐(Θ) ∝ ∑𝑚

𝑖=1 ∑𝑓𝑖
𝑗=1 log𝑔(𝑥𝑖𝑗|Θ), 

 
where 𝑔(. |Θ) is given by (2). It follows that 
 
 𝑙𝑐(Θ) ∝ 𝑛log (

𝛾

𝛽
) + (𝛾 − 1) ×

∑𝑚
𝑖=1 ∑𝑓𝑖

𝑗=1 (log (
𝑥𝑖𝑗−𝛼

𝛽
) − (

𝑥𝑖𝑗−𝛼

𝛽
)𝛾). (13) 

 

Differentiating right-hand side of (13) with 
respect to 𝛾 and 𝛽, we have 
 
 𝜕𝑙𝑐(Θ)

𝜕𝛾
=

𝑛

𝛾
+ ∑𝑚

𝑖=1 ∑𝑓𝑖
𝑗=1 log (

𝑥𝑖𝑗−𝛼

𝛽
) −

                     ∑𝑚
𝑖=1 ∑𝑓𝑖

𝑗=1 log(
𝑥𝑖𝑗−𝛼

𝛽
)(

𝑥𝑖𝑗−𝛼

𝛽
)𝛾 , 

 
 𝜕𝑙𝑐(Θ)

𝜕𝛽
= −

𝑛

𝛽
−

𝑛(𝛾−1)

𝛽
+

                      𝛾𝛽−𝛾−1 ∑𝑚
𝑖=1 ∑𝑓𝑖

𝑗=1 (𝑥𝑖𝑗 − 𝛼)𝛾 . 
 
Assume that we are at 𝑡-th iteration of the 
EM algorithm. By equating the expected 
values of both sides of partial derivatives to 
zero, we obtain 
 
 𝛾 =

𝑛

∑𝑚
𝑖=1 𝑓𝑖𝐸

1𝑖
(𝑡)

−∑𝑚
𝑖=1 𝑓𝑖𝐸

2𝑖
(𝑡), 

 𝛽 = (
∑𝑚

𝑖=1 𝑓𝑖𝐸3𝑖
(𝑡)

𝑛
)

1

𝛾, 
 
where 
 

𝐸1𝑖
(𝑡)

= 𝐸(log(
𝑋𝑖𝑗 − 𝛼

𝛽
)|𝑋𝑖𝑗 , Θ(𝑡)) 

=
1

𝐷𝑖
∫

𝑟𝑖

𝑟𝑖−1
log(

𝑥−𝛼(𝑡)

𝛽(𝑡) )𝑔(𝑥|Θ(𝑡))𝑑𝑥,    (14) 

 𝐸2𝑖
(𝑡)

=

𝐸(log(
𝑋𝑖𝑗−𝛼

𝛽
)(

𝑋𝑖𝑗−𝛼

𝛽
)𝛾|𝑋𝑖𝑗 , Θ(𝑡)) =

1

𝐷𝑖
∫

𝑟𝑖

𝑟𝑖−1
(

𝑥−𝛼(𝑡)

𝛽(𝑡) )𝛾(𝑡)
log(

𝑥−𝛼(𝑡)

𝛽(𝑡) )𝑔(𝑥|Θ(𝑡))𝑑𝑥,    

                                                                (15) 
𝐸3𝑖

(𝑡)
= 𝐸((𝑋𝑖𝑗 − 𝛼)𝛾|𝑋𝑖𝑗, Θ(𝑡)) 

=
1

𝐷𝑖
∫

𝑟𝑖

𝑟𝑖−1
(𝑥 − 𝛼(𝑡))𝛾(𝑡)

𝑔(𝑥|Θ(𝑡))𝑑𝑥, (16) 
 
in which 𝑋𝑖𝑗 ∈ (𝑟𝑖−1, 𝑟𝑖 ], 𝐷𝑖 =

𝐺(𝑟𝑖|Θ(𝑡)) − 𝐺(𝑟𝑖−1|Θ(𝑡)), for 𝑖 = 1, … , 𝑚, 
𝐺(𝑟0|Θ(𝑡)) = 0, and 𝐺(. |Θ(𝑡)) is defined as 
(4). The location parameter can be updated 
through conditionally maximization (CM) 
step. So, at 𝑡-th iteration of the algorithm, the 
location parameter is updated as 
𝛼(𝑡+1) = 

𝑎𝑟𝑔𝑚𝑎𝑥
𝛼

∑

𝑚

𝑖=1

𝑓𝑖log[𝐺(𝑟𝑖|Θ̅) − 𝐺(𝑟𝑖−1|Θ̅)], 

 
where Θ̅ = (𝛾(𝑡+1), 𝛽(𝑡+1), 𝛼)𝑇, 𝑟0 =
min{𝑥1, … , 𝑥𝑛}, and 𝐺(𝑟0|Θ̅) = 0. The M-
step is complete. Fortunately, all three 
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quantities 𝐸1𝑖
(𝑡), 𝐸2𝑖

(𝑡), and 𝐸3𝑖
(𝑡) given, 

respectively, in (14), (15), and (16) have 
closed-form expressions. Suppose 𝛾(𝑡+1), 
𝛽(𝑡+1), and 𝛼(𝑡+1) are updated values of the 
parameters 𝛾, 𝛽, and 𝛼, respectively, at (𝑡 +
1)-th iteration. We stop the EM algorithm if 

max {|𝛾(𝑡+1) − 𝛾(𝑡)|, |𝛽(𝑡+1) − 𝛽(𝑡)|, 
|𝛼(𝑡+1) − 𝛼(𝑡)|} < 10−5. 

 
The initial values for starting the EM 
algorithm are obtained through the method 
of moments. Consider the transformation 
𝑌 = 𝑋 − 𝛼, where 𝑋 follows the Weibull 
distribution with pdf (2). It follows that 
 

𝐸(𝑌) = 𝛽Γ(1 +
1

𝛾
), 

𝐸(𝑌2) = 𝛽2Γ(1 +
2

𝛾
). 

 
Equating the sample moment to the 
corresponding population moment up to the 
second order, the equations given by the 
following are used to find the moment-based 
estimators for the grouped data.  
𝛽

𝛾
Γ (

1

𝛾
) =

1

𝑛
∑𝑚

𝑖=1 𝑓𝑖𝐸(𝑌𝑖𝑗|𝑌𝑖𝑗, Θ(𝑡)), (17) 

2𝛽2

𝛾
Γ (

2

𝛾
) =

1

𝑛
∑𝑚

𝑖=1 𝑓𝑖𝐸(𝑌𝑖𝑗
2|𝑌𝑖𝑗, Θ(𝑡)), (18) 

 

where 𝑌𝑖𝑗 ∈ (𝑟𝑖−1
′ , 𝑟𝑖

′], for 𝑖 = 1, … , 𝑚. Both 
expectations given in the right-hand side of 
(17) and (18) are expressed in terms of 
incomplete gamma function. To avoid 
computational complexity, we use the mid-
point approximation of these expressions. It 
follows that 
  
𝛽Γ(1 +

1

𝛾
) =

1

𝑛
∑𝑚

𝑖=1 𝑓𝑖(
𝑟𝑖−1

′ +𝑟𝑖
′

2
), (19) 

 
𝛽2Γ(1 +

2

𝛾
) =

1

𝑛
∑𝑚

𝑖=1 𝑓𝑖(
𝑟𝑖−1

′ +𝑟𝑖
′

2
)2, (20) 

 
where 𝑟0

′ = min{𝑦1, … , 𝑦𝑛} and 𝑟𝑖
′ = 𝑟𝑖 − 𝛼, 

for 𝑖 = 1, … , 𝑚. Solving simultaneously 
Equations (19) and (20), the initial values 
𝛾(0) and 𝛽(0) are obtained. For the location 
parameter, we set the minimum of original 
observations as the initial value, i.e., 𝛼(0) =
min{𝑥1, … , 𝑥𝑛} when 𝑥1 , … , 𝑥𝑛 are 
independent realizations form the three-
parameter Weibull distribution. 
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