

Exploring the drivers of agricultural carbon emissions using global innovation index: Top-carbon emitting countries

**Somayeh Naghavi^{1*}, Abbas Mirzaei², Mohsen Adeli Sardooei³ **

¹ Department of Agricultural Economics, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

² Department of Agricultural Economics, Faculty of Agriculture Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Kuzestan, Mollasani, Iran

³ Department of Agricultural Economics, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Article Info

Abstract

Article type:
Research Article

This research investigated the total decoupling between CO₂ emissions and agricultural growth in Iran, India, Korea, Russia, China, the United States, Japan, Canada, and Germany employing the Tapio decoupling index and Logarithmic Mean Division Index (LMDI) methods. The decomposing of the total decoupling index revealed that the energy intensity effect was the main decisive factor for CO₂ emissions reduction across all countries while the global innovation efficiency effect was a primary contributor in Korea, Japan, the United States, Germany, China, and Russia specifically in Korea energy intensity and global innovation efficiency were the leading promoters for Canada energy intensity was the most important factor for emissions reduction in China the United States and Germany energy intensity and global innovation efficiency were the main promoters in Russia energy intensity global innovation efficiency and the structure effect all played important roles carbon emissions coefficient was the most critical factor in Iran's decoupling and for India the energy intensity and structure effects were the key promoting factors these findings underscore that strategic measures for sustainable development must aim to decrease energy intensity consumption and that innovations are crucial for mitigating fossil fuel use and reducing emissions the results provide a useful guideline for energy-saving and carbon-reducing policies to foster sustainable economic development in the selected countries.

Corresponding author:
sommaghavi@ujiroft.ac.ir
som_naghavi@yahoo.com

Keywords:
Global Innovation Index
Tapio Decoupling
LMDI Method
Driving Factors

Cite this article: Naghavi, S., Mirzaei, A., Adeli Sardooei, M. 2025. Exploring the Drivers of Agricultural Carbon Emissions According to the Role of Global Innovation Index: Top-Carbon Emitting Countries. *Environmental Resources Research*, 13(2), 359-375.

© The Author(s).

DOI: 10.22069/IJERR.2025.23321.1485

Publisher: Gorgan University of Agricultural Sciences and Natural Resources

Introduction

Energy is a primary input in the agricultural sector (Mushtaq et al., 2007), used directly in crop and livestock production and indirectly in the production and transport of chemical pesticides and fertilizers (Sebri et al., 2012; Agheli, 2015; Ceylan, 2020; Zaman et al., 2012). The increasing use of energy accelerates environmental degradation, which is immensely worrying given that global warming is a critical global issue (Wang et al., 2013). Carbon dioxide (CO₂) is a significant cause of this warming (Myhre et al., 2013), and its annual emissions have been rising since 2019 (Jackson et al., 2019). The agricultural sector itself is a significant contributor, with practices accounting for approximately 20% of carbon emissions (World Bank, 2018), thus playing a major role in global warming (Lynch et al., 2021). Therefore, optimal energy use is a basic necessity to decrease environmental degradation, protect natural resources, and promote agricultural sustainability (De Jonge, 2004; Ghorbani et al., 2011; Yuan and Peng, 2017). Effectively managing these emissions is crucial, as global carbon emissions represent a severe threat to human life (Wu et al., 2019).

The development of low-carbon economy, energy saving and emission reduction has become very important issues for all countries (Meinshausen et al., 2022). The dependence on CO₂ emissions and economic growth is a significant issue that needs much attention. To ensure the interdependence between economic growth and CO₂ emissions it is necessary to investigate the decoupling index. “*The decoupling index is commonly used to measure the relationships and asynchronous changes between resource consumption, environmental pressure, and economic growth*” (Long and Wang, 2017). The decoupling of the economy growth from CO₂ emissions is considered as a principle and guide for assessing sustainable economic development (Jorgenson and Clark, 2012; Schandl et al., 2016). In the agricultural policy, research has generally used the absolute decoupling and relative decoupling by The Organization for Economic Cooperation and Development (OECD)

(Galko and Jayet, 2011). “*Absolute decoupling shows the stable or declining state of the environmental features associated with economic development. Relative decoupling refers to the increase in environmental pressure and resource consumption, and economic development*”.

This paper first measures the agricultural carbon emissions in the top nine CO₂ emitters China, Canada, Iran, USA, India, Russia, Japan, Germany, and Korea from 2013 to 2019, then uses the Logarithmic Mean Division Index (LMDI) model to explore the drivers of agricultural carbon emissions, combines the decoupling model to analyze the relationship between agricultural carbon emissions and value added of agricultural sector. Statistics on the top 10 carbon dioxide emissions in 2018 and their global share are represented in Table1. Among the top three emitters, China and India both saw significant increases from Kyoto Protocol 2005. The United States, along with Germany and Japan, have all recorded three-digit declines. For investigating the total decoupling CO₂ emissions from agricultural growth, a series of measures have been considered. Firstly, we employed the decoupling method (Tapió, 2005) to explore the decoupling states between CO₂ emissions and agricultural growth in the selected countries. Secondly, in order to investigate more factors affecting the carbon emissions of these countries, measuring the decoupling states and driving factors affecting carbon emissions, we combined the extended LMDI and Tapió decoupling methods.

The novelty of this study is in the following aspects:

- 1) Investigating the decoupling of CO₂ emissions from agricultural growth in the nine countries of the top CO₂ emitters.
- 2) Combining the decoupling index (Tapió, 2005) and decomposition index (Kaya).
- 3) Investigating the impact of the global innovation index on the decoupling of CO₂ emissions from agricultural growth.

Although several studies have focused on energy consumption and carbon dioxide emissions, no extant study is devoted to

decomposing CO₂ emissions and decoupling them from agricultural growth in C9 countries and investigates the impact of the global innovation index on the decoupling of CO₂ emissions from agricultural growth. The results of this study are beneficial considering the role of these countries in the global economy and carbon emissions. The global innovation index (GII) is provided metrics about the innovation performance of 131 countries around the world (Wallis, 2012). The Global Innovation Index consists of 81 sub-variables that are divided into two main sub-indices, innovation input and innovation output. The input elements of innovation include institutions - human and research capital - infrastructure - market and business complexity. Innovation output variables also include knowledge and technology output variables and creative outputs (Goodridge et al., 2013).

The rest of this research are arranged as follows: Section 2 investigates the literature related to decoupling index and decomposition method, Section 3 introduces the methodology, Section 4 shows the results and discussion while Section 5 concludes this research based on the research contents.

Literature review

Several studies have investigated the decoupling of economic growth and CO₂ emissions and energy consumption. Sun et al., (2022) analyzed carbon emissions from agricultural energy consumption using data from the Yangtze River Economic Belt (YEB) between 2000 and 2017. Hossain and Chen (2021) showed that the population, the agricultural energy intensity, and the agricultural economic factor have an important role in increasing CO₂ emissions. Peng et al., (2021) used decomposition analysis and showed the electricity sector has the important role in the CO₂ emissions. Huo et al., (2021) applied Tapio decoupling index to investigate relation between residential building carbon emissions and residential income in 30 provinces China. Their findings showed that the decoupling state has been changed from weak to strong. Wang and Su (2020) in their study showed that decoupling states of developed countries were stable in weak decoupling. Wang and Jiang (2020)

investigated the decoupling of carbon emissions from economic growth. Their findings showed that the decoupling in Russia and, South Africa is better than Brazil, India and China. Zhang et al., (2018) showed that there had an increase in the number of expansive negative decoupling states in China's logistics industry in 2005-2015. Li and Jiang (2020) investigated the effect R&D investment on the decoupling economic growth and CO₂ emissions in six carbon dioxide emitters. The results indicated that the decoupling status in the USA, Japan and Germany were better than China, India and Russia. Ahmed and Zeshan (2015), decomposes energy consumption in Pakistan. They showed that agricultural growth can decrease the change in energy consumption. Chontanawat et al., (2020) indicated that the economic structure was decreased CO₂ emissions and carbon intensity in the Thailand industrial sector. Gu et al., (2019) applied LMDI method. Their findings showed that the promotion of public transportation and the optimization is helped to decrease Shanghai's CO₂ emissions. Engo (2018) used Tapio and LMDI methods for decoupling carbon emissions from economic growth in Cameroon. The findings indicated that Cameroon performed weak decoupling. Zakhan et al., (2019) applied decomposition index to decoupling of manufacturing CO₂ emissions in Indonesia. The results showed relative decoupling occurred in 2012-2013. Zhang et al., (2009) investigated energy-related CO₂ emissions using analytical analysis. The results of their study showed that economic activity had the most significant positive effect on changes in CO₂ emissions for the entire primary economic sector and the Chinese economy as a whole. Wang et al., (2019) performed a comparative analysis between China and, United States in terms of carbon decoupling and decomposition index from economic growth. The results showed that in most years of the study period, China experienced strong and weak decoupling and the United States mostly "weak and strong decoupling. Tunc et al., (2009) investigated CO₂ emissions from energy consumption in Turkey using the analysis method and the logarithmic mean division index. Zhao et al., (2015) focused on

decoupling CO₂ emissions and industrial growth in China. Their findings showed that the most important factor in the decoupling of CO₂ and industrial growth was the investment scale. These studies show the importance of using the decoupling index to discover the relationship between carbon emissions and economic growth for the purposes of achieving sustainable development and

reducing global carbon emissions. If economic growth occurs alongside a decrease in carbon emissions, strong decoupling takes place.

Methodology

The conceptual model used in this study is shown in Figure 1.

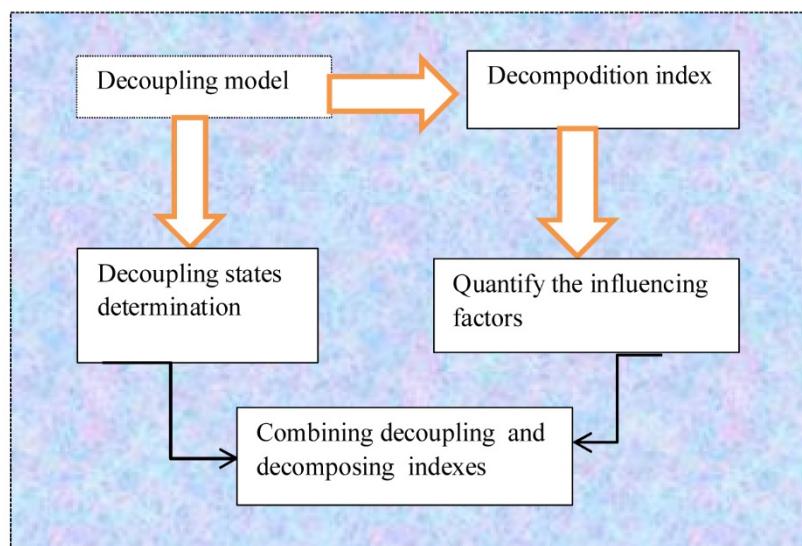


Figure 1. The conceptual model used in the study

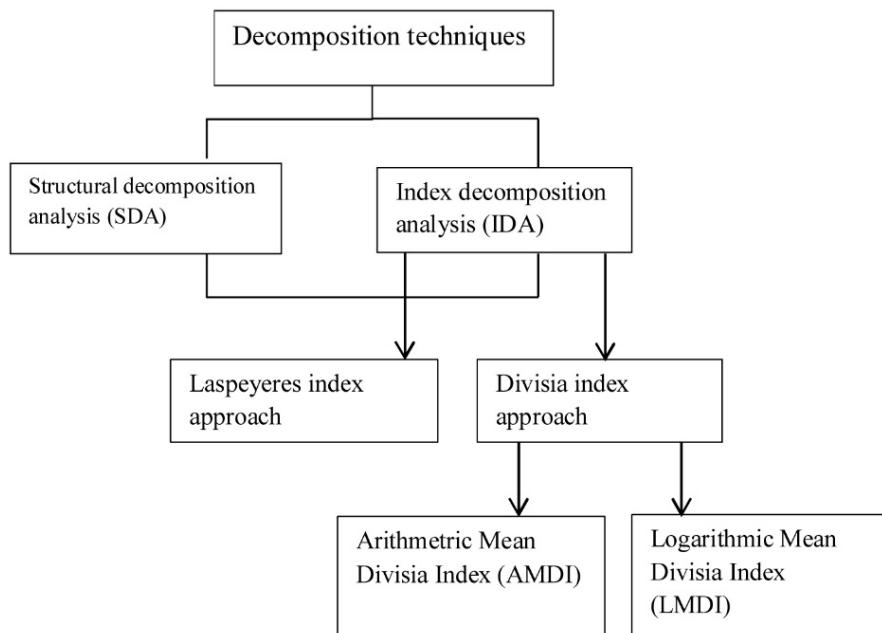
Decoupling Index

The Decoupling index introduced by Tapiro (2005) is shown in Eq (1):

$$DI = \frac{\Delta C}{C_0} / \frac{\Delta AG}{AG_0} \quad (1)$$

where DI indicates the Tapiro decoupling

elasticity, $\frac{\Delta C}{C_0}$ and $\frac{\Delta AG}{AG_0}$ indicate CO₂ emission changes and agricultural value-added changes respectively. Decoupling index can be divided into eight states according to the differences in the elastic coefficient. Table 1 shows the eight states of decoupling index.


Table 1. Different states of decoupling index, Tapiro, 2005.

Status		$\frac{\Delta C}{C_0}$	$\frac{\Delta AG}{AG_0}$	Decoupling index
Negative Decoupling	Expansive	> 0	> 0	DI > 1.2
	Strong	> 0	< 0	DI < 0
	Weak	< 0	< 0	0 ≤ DI < 0.8
Decoupling	Weak	> 0	> 0	0 ≤ DI < 0.8
	Strong	< 0	> 0	DI < 0
	Recessive	< 0	< 0	DI > 1.2
Coupling	Expansive	> 0	> 0	0.8 ≤ DI ≤ 0.8
	Recessive	< 0	< 0	0.8 ≤ DI ≤ 0.8

Decomposition model

Figure 2 shows decomposition techniques. These techniques are divided into two methods, structural decomposition analysis (SDA) and index decomposition analysis (IDA) (Jiang et al., 2019). The SDA method needs input-output tables, but the IDA method is better than the SDA method. The IDA method includes the Laspeyres index approach and the Divisia index approach (Fan et al., 2019).

The Divisia index approach includes two indexes, Arithmetic Mean Divisia Index (AMDI) and Logarithmic Mean Division Index (LMDI) (Ang, 2015). AMDI has limitations of the residuals and zero value. Therefore, the application of this index is limited (Wang et al., 2018a; Zhang and Da, 2015). LMDI is used to decompose energy consumption and carbon emissions (Wang et al., 2020; Zhang et al., 2019).

Figure 2. Composition of the decomposition techniques

The CO₂ emissions can be calculated via Eq. (2), (Kaya, 1990):

$$C = \sum_{i=1}^2 C_i = \sum_{i=1}^2 \frac{C_i}{EN_i} \cdot \frac{EN_i}{EN} \cdot \frac{EN}{AG} \cdot \frac{AG}{GII} \quad (2)$$

where i represents i -th energy type in agricultural sector ($i=1,2$ represents oil and coal in agricultural sector, respectively). Definition of variables are represented in Table 2.

Table 2. Definition of variables in Eq (2)

Variable	Definition
C_i	CO ₂ emissions arising from the i -th energy in agricultural sector
EN_i	The i -th energy consumption in agricultural sector
EN	Total energy consumption in agricultural sector
AG	Value added of agricultural sector
GII	Global innovation index

We can decompose the total of CO₂ emissions into four driving forces: the emission coefficient effect, the energy structure effect, the energy intensity effect and the global innovation efficiency effect.

$$\Delta C = C_t - C_0 = \Delta C_{EC} + \Delta C_{ES} + \Delta C_{EI} + \Delta C_{GE} \quad (3)$$

$$\Delta C_{EC}, \Delta C_{ES}, \Delta C_{EI} \text{ and } \Delta C_{GE}$$

The decomposition from base year to target year are calculated using eq 4-7:

$$\Delta C_{EC} = \sum_{i=1}^2 \frac{C_i^t - C_i^0}{\ln(C_i^t) - \ln(C_i^0)} \ln\left(\frac{EC_i^t}{EC_i^0}\right) \quad (4)$$

$$\Delta C_{ES} = \sum_{i=1}^2 \frac{C_i^t - C_i^0}{\ln(C_i^t) - \ln(C_i^0)} \ln\left(\frac{ES_i^t}{ES_i^0}\right) \quad (5)$$

$$\Delta C_{EI} = \sum_{i=1}^2 \frac{C_i^t - C_i^0}{\ln(C_i^t) - \ln(C_i^0)} \ln\left(\frac{EI_i^t}{EI_i^0}\right) \quad (6)$$

$$\Delta C_{GE} = \sum_{i=1}^2 \frac{C_i^t - C_i^0}{\ln(C_i^t) - \ln(C_i^0)} \ln\left(\frac{GE^t}{GE^0}\right) \quad (7)$$

In this paper, we combine the Tapiol decoupling index with the LMDI decomposition results. The total decoupling index of the agricultural growth and CO₂ emissions can be represented in Equation (8):

$$\begin{aligned} \varepsilon = DI_t &= \frac{\Delta C}{C^0} / \frac{\Delta AG}{AG^0} = \frac{\Delta C_{EC}/C^0}{\Delta AG/AG^0} + \frac{\Delta C_{ES}/C^0}{\Delta AG/AG^0} + \\ &\frac{\Delta C_{EI}/C^0}{\Delta AG/AG^0} + \frac{\Delta C_{GE}/C^0}{\Delta AG/AG^0} = \varepsilon_{EC} + \varepsilon_{ES} + \varepsilon_{EI} + \varepsilon_{GE} \end{aligned} \quad (8)$$

Table 3. The evaluation of the impacts of the sub-decoupling index on the total decoupling relationship

$\frac{\Delta AG}{AG^0}$	$\frac{\Delta C}{C^0}$	Description
> 0	> 0	DI _{EC} , DI _{ES} , DI _{EI} , DI _{GE} play an inhibiting role in the decoupling relationship. The higher the value of the sub-decoupling index, the stronger the inhibiting effect of the index on the decoupling relationship.
	< 0	DI _{EC} , DI _{ES} , DI _{EI} , DI _{GE} play a promoting role in the decoupling relationship. The smaller the value of the sub-decoupling index, the stronger the promoting effect of the index on the decoupling relationship.

Zhang et al (2018)

Data Sources

This study examined the period from 2013 to 2019. The data for energy-related CO₂ emissions, AG, GII, originate from The World Bank (2019), energy consumptions were derived via the FAOSTAT and Khonema.com.

Results

Decomposition Analysis of CO₂ from agricultural sector of countries

The decomposition results of the CO₂ emissions changes from 2013 to 2019 are represented in Table 4.

We concentrated on the results of 2013 and

where DI_t represents the total decoupling index, $\frac{\Delta C}{C^0}$ represents the growth rate of CO₂; $\frac{\Delta AG}{AG^0}$ represents the growth rate in agricultural sector; ε_{EC} or DI_{EC} imply emission coefficient decoupling index, ε_{ES} or DI_{ES} implies energy structure decoupling index; ε_{EI} or DI_{EI} imply energy intensity decoupling index and ε_{GE} or DI_{GE} show global innovation decoupling index.

The evaluation of criteria for the influencing effect of the sub-decoupling index on the total decoupling relationship is displayed in Table 3, where DI_t represents the sub-decoupling index.

for periods 2014-2019. The results can be seen in Table 4. In 2013, the emission coefficient effect was the reducing contributor to the increase of CO₂ emissions in Korea, United States, Germany, Japan, and Russia. The structural effect is the primary driver to the increasing CO₂ emissions in Korea, United states, Japan, China, India, Iran, and Russia. The Energy intensity plays a positive role in the total increase of CO₂ emissions in the agricultural sector of Japan, China, India, and Iran. The global innovation effect has a positive role in the total increase of CO₂ emissions of Canada, United States, Germany, India and Iran.

Table 4. The decomposition of CO₂ emissions from agricultural sector in the selected countries

Period		Korea	Canada	United States	Germany	Japan	China	India	Iran	Russia
Δ_{EC}	2013	-0.004	0.02	-0.10	-0.03	-0.10	0.03	0.02	0.005	-1740.45
	2014	-0.006	-0.03	0.001	0.07	0.07	-0.01	0.55	0.01	-291.704
	2015	0.01	0.02	-0.17	-0.03	0.04	0.006	-0.66	-0.0001	-67.99
	2016	-0.02	0.05	0.04	0.03	-0.03	0.04	0.11	0.00005	231.77
	2017	0.04	-0.09	0.24	-0.07	0.07	-0.03	0.01	0.009	131.19
	2018	-0.05	0.08	0.05	0.04	-0.09	0.0001	0.002	0.009	51.07
	2019	-0.51	-0.05	-0.10	-0.04	-0.01	0.059	-0.02	-0.02	75.63
Δ_{ES}	2013	5.10	-0.65	9.60	-2.90	5.27	0.54	293.92	4.12	3.90
	2014	8.65	-0.60	2.72	0.89	2.19	7.89	-35.03	11.62	47.06
	2015	-0.29	1.16	-0.13	3.44	4.35	2.81	-49.48	23	66.00
	2016	0.05	-0.19	-0.15	5.39	0.50	-0.53	-55.49	20.06	-32.61
	2017	1.42	-0.05	-1.01	-0.30	4.07	-2.99	114.34	16.12	-34.26
	2018	6.17	0.12	-0.14	-3.47	3.64	-4.82	-50.63	16.07	-30.17
	2019	1.36	0.26	-0.41	0.86	2.39	-1.22	-4.57	15.47	-14.42
Δ_{EI}	2013	-32.91	-15424.2	-83.90	-65.73	39.38	5672.76	7953.67	5.38	-167.42
	2014	-67.06	-16702.4	14.57	31.56	-5.38	5996.77	-5157.92	1.90	125.07
	2015	8.50	-15839.4	-9.93	309.22	-133.74	-3248.19	-4127.18	21.51	-1042.69
	2016	98.59	-12547.9	-15.79	-322.99	-83.41	-2403.35	-3959.25	31.57	-227.80
	2017	-80.07	-11972.9	-15.77	-98.49	121.37	-21.94	-3148.97	16.56	173.75
	2018	56.42	-12320.9	-3.56	40.61	31.41	-14047.7	-1660.10	15.84	511.86
	2019	45.74	-11361.8	-24.95	-89.85	277.08	-2049.65	-2610.87	19	-150.98
Δ_{GE}	2013	-30.22	74.20	46.03	75.02	-24.39	-3414.21	2588.44	5.53	-18.61
	2014	-4.13	-122.76	-24.92	-27.86	-97.31	-3933.24	2264.40	9.77	247.23
	2015	-7.29	151.53	-31.22	-216.12	74.31	140.62	-308.12	22.66	273.30
	2016	-35.40	15.30	-18.63	22.60	115.15	3807.59	477.65	19.82	-20.68
	2017	28.96	26.71	10.80	109.97	21.10	660.89	814.74	15.86	-48.17
	2018	-18.28	1.91	-15.64	-107.64	47.48	-406.33	-344.77	15.34	-30.17
	2019	-29.03	26.33	9.19	53.96	-175.63	2624.31	732.31	19.69	158.75
ΔC	2013	-58.03	-15350.63	-28.37	6.36	20.16	2259.12	10836.05	15.03	-2797.85
	2014	-62.54	-16825.79	-7.62	4.66	-100.43	2071.41	-2928	23.3	-225.21
	2015	0.93	-15686.69	-41.45	96.51	-55.04	-3104.75	-4485.44	67.17	445.06
	2016	63.22	-12532.74	-34.53	-294.97	32.21	1403.75	-3536.98	71.45	690.34
	2017	-49.65	-11946.33	-5.74	11.11	146.61	635.75	-2219.88	48.55	-102.22
	2018	44.26	-12318.79	-19.29	-70.46	82.44	-14458.85	-2055.49	47.26	-9.27
	2019	17.56	-11335.26	-16.27	-35.07	103.83	573.50	-1883.15	54.14	219.96

Table 5. The decoupling of agricultural growth in the selected countries.

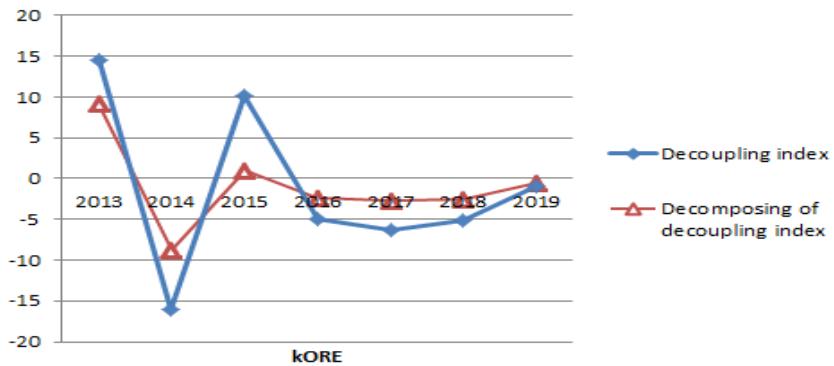
Period	Korea	Iran	Russia	India	Canada	China	Japan	Germany	United states
2013	RD	SD	SD	END	EC	SND	SND	WD	SD
2014	SD	END	END	SD	SND	SND	RC	SND	WND
2015	END	END	SD	SD	SD	WD	SD	SND	RD
2016	SND	SD	RD	SD	SD	WD	WD	SD	RD
2017	SD	SD	SND	SD	END	EC	END	WD	SD
2018	SND	WND	SND	RD	SD	SD	END	WND	RD
2019	SND	SD	SD	SD	SD	SD	SND	SD	SD

Investigating the Decoupling index

Table 5 shows the decoupling states between CO₂ emissions and agricultural growth in C9 countries during 2013-2019. We concentrated on strong decoupling and strong negative decoupling. In year 2013, the decoupling state of Russia, Iran and United states was strong decoupling. Therefore, value added of agricultural increases faster than CO₂ emissions in these countries. The decoupling state of China and Japan was strong negative decoupling. This state is a worse state. CO₂ emissions increases faster than value added of agricultural sector in these countries. In year 2014, the decoupling state of Korea and India and was strong decoupling. The decoupling state of Canada and China was strong negative decoupling. In the year 2015, India, Russia, Canada and Japan are characterized by strong decoupling and Germany is characterized by strong negative decoupling. In the year 2016, India, Russia, Canada, Iran, and Germany are characterized by strong decoupling and Korea is characterized by strong negative decoupling. In the year 2017, the decoupling state of Korea, Iran, India and United states was strong decoupling and the decoupling state in Russia was strong negative decoupling. In 2018, Strong decoupling occurred in China and Canada and strong negative decoupling occurred in Kore. In 2019, Iran, Russia, India, Canada, China, Germany, and United States experienced strong decoupling and Korea and Japan experienced strong negative decoupling.

In the period 2013- 2019, the decoupling state in Korea changed from recessive decoupling to strong negative decoupling. Iran, Russia and United state experienced the decoupling state strong decoupling and were stable in this status. The decoupling state in India has

changed from expansive negative decoupling to strong decoupling, China has strong decoupling in 2019 while Japan was stable in strong negative decoupling in this period and the decoupling state of Germany has changed from weak decoupling to strong decoupling.


Decomposition results of decoupling indicators

Corresponding to the above decoupling analysis, the driving forces of C9 countries' decoupling were quantified for the periods 2013-2019, see Tables 6-15. The total decoupling index between CO₂ emissions and agricultural growth and the influence of the emission coefficient effect, the energy structure effect, the energy intensity effect, the global innovation efficiency effect on the decoupling progress are shown in Tables 6-15.

Table 6 shows that the total decoupling index for Korea was 9.153 and -8.795 in 2013 and 2014, respectively. It can be seen that the energy intensity effect on CO₂ emissions appears more than other factors effect in 2013, 2014 and 2017. Also, the total decoupling index was 0.927 in 2015. Therefore, there is no decoupling effect in 2015. The Global innovation efficiency effect appears more than other factors effect in 2018 and 2019, this shows that the economic growth rate caused by the global innovation efficiency effect increase and the carbon emission growth rate decrease. Figure 3 compares the decoupling index and the influence of the emission coefficient effect, the energy structure effect, the energy intensity effect, the global innovation efficiency effect changes on the decoupling progress in Korea.

Table 6. The total decoupling between CO₂ emissions and agricultural growth, Korea

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	0.0007	-0.805	5.191	4.766	9.153	RD
2014	-0.0009	1.217	-9.430	-0.581	-8.795	SD
2015	0.016	-0.298	8.504	-7.295	0.927	EC
2016	0.0009	-0.002	-3.698	1.328	-2.371	SND
2017	0.002	0.079	-4.474	1.618	-2.773	SD
2018	0.003	-0.354	-3.244	1.051	-2.544	SND
2019	0.015	-0.040	-1.362	0.864	0.523	SND

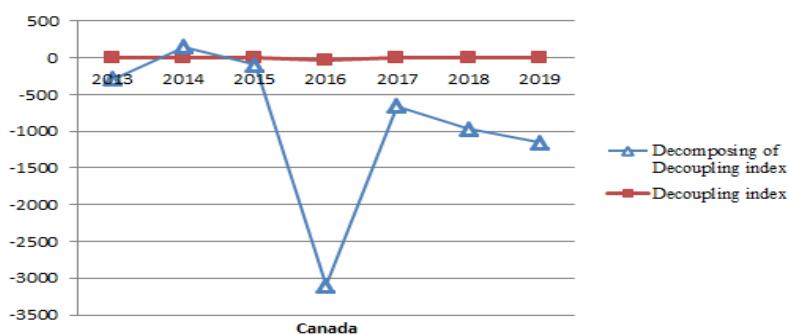

Figure 3. The total decoupling trend in Korea

Table 7 shows the decoupling progress in Canada where the emergence of strong decoupling was primarily driven by the energy intensity effect this indicates that the rate of economic growth surpassed the rate of carbon emissions leading to a decrease in carbon emissions alongside an increase in

agricultural production. Figure 4 illustrates the decoupling index and the influence of changes in the emission coefficient effect energy structure effect energy intensity effect and global innovation efficiency effect on the decoupling progress in Canada

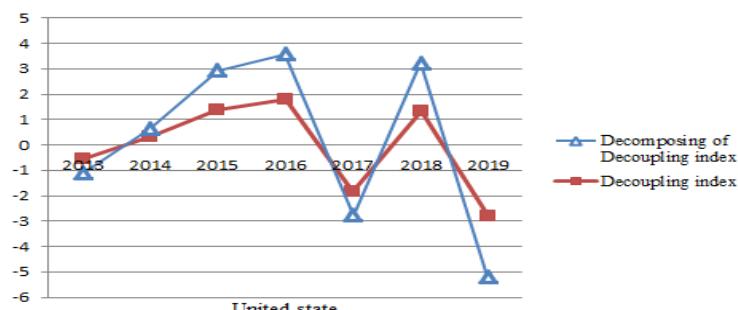
Table 7. The total decoupling between CO₂ emissions and agricultural growth, Canada

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	0.0004	-0.012	-287.25	1.382	-285.88	SD
2014	0.0003	0.005	148.82	1.093	149.92	RD
2015	0.0001	0.006	-92.09	0.881	-91.20	SD
2016	0.012	-0.046	-3071.11	3.745	-3067.4	SD
2017	-0.005	-0.002	-662.92	1.478	-661.45	SD
2018	0.006	0.009	-961.12	0.149	-961.13	SD
2019	-0.005	0.026	-1145.91	2.656	-1143.23	SD

Figure 4. The total a decoupling trend in Canada

The global innovation efficiency plays a promoting role as can be seen for the years 2013, 2017, and 2019 when energy intensity effect was promoting in the decoupling relationship. Figure 5 shows the decoupling index and the influence of the emission coefficient effect, the energy structure effect, the energy intensity effect, and the global

efficiency effect changes on the decoupling progress in the United States.


It should be noted that in the years 2014, 2015 and 2018 between the emission coefficient effect, the energy structure effect, the energy intensity effect, the global innovation efficiency effect, and the global innovation efficiency effect play a promoting role in the

decoupling relationship (Table 8). Also, in 2013, 2016, 2017 and 2019 the energy intensity effect has a positive role in CO₂ emissions reduction. Figure 6 shows the decoupling index and the influence of the emission coefficient effect, the energy structure effect, the energy intensity effect, the global innovation efficiency effect changes on the decoupling progress in

Germany (Table 9). According to the results of Table 10, in 2013, 2014 and 2019 the global innovation efficiency effect, in 2017 and 2018 emission coefficient effect and in 2015-2016 energy intensity effect have a promoting role in the decoupling state of agricultural growth from the CO₂ emissions in Japan. In Figure 7, the decoupling trend is shown for Japan.

Table 8. The total decoupling between CO₂ emissions and agricultural growth, the United States

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	-0.002	0.184	-1.610	0.883	-0.544	SD
2014	-0.00006	-0.112	-0.601	1.028	0.314	WND
2015	0.006	0.005	0.375	1.180	1.568	RD
2016	-0.002	0.007	0.817	0.963	1.786	RD
2017	0.04	-0.167	-2.604	1.783	-0.948	SD
2018	-0.005	0.014	0.350	1.535	1.894	RD
2019	-0.016	-0.061	-3.665	1.350	-2.392	SD

Figure 5. The total decoupling trend in the United States

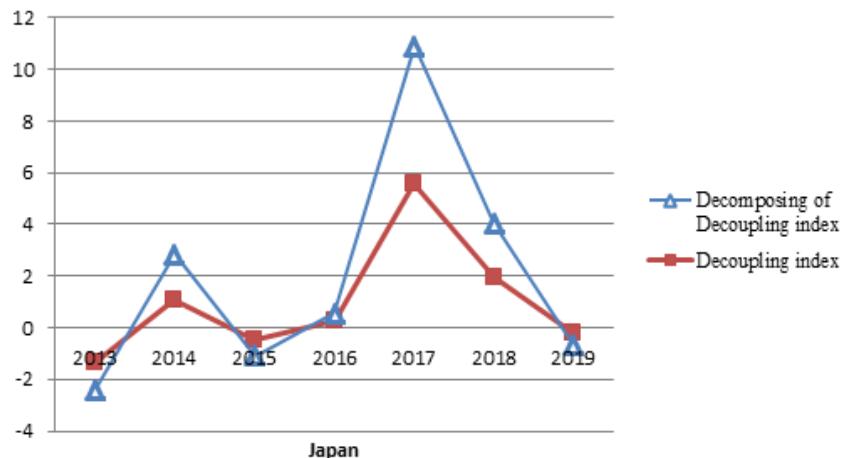

Figure 6. The total decoupling trend in Germany

Table 9. The total decoupling between CO₂ emissions and agricultural growth, Germany

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	-0.0003	-0.035	-0.806	0.920	0.077	WD
2014	-0.005	-0.065	-2.320	2.048	-0.343	SND
2015	0.0002	-0.020	-1.836	1.283	-0.573	SND
2016	0.0008	0.151	-9.046	0.633	-8.261	SD
2017	0.0006	-0.002	-0.846	0.944	0.095	WD
2018	-0.0004	0.034	-0.396	1.052	0.688	WND
2019	-0.001	0.019	-2.020	1.213	-0.788	SD

Table 10. The total decoupling between CO₂ emissions and agricultural growth, Japan

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	0.005	-0.281	-2.098	1.299	-1.074	SND
2014	-0.001	0.039	0.096	1.738	1.794	RC
2015	0.0005	0.048	-1.471	0.817	-0.605	SD
2016	-0.0002	0.004	-0.673	0.929	0.260	WD
2017	0.002	0.147	4.399	0.764	5.314	END
2018	-0.002	0.094	0.812	1.228	2.132	END
2019	0.00004	-0.011	-1.286	0.815	-0.482	SND

Figure 7. The total decoupling trend in Japan

The results in Table 11 show that in China the decoupling index state changed from weak to strong decoupling over the period 2015-2019 during which the energy intensity effect played a promoting role in this progress additionally from 2013 to 2014 the state changed from expansive coupling to weak decoupling indicating the global innovation

effect also played a promoting role in the decoupling index with the overall decoupling trend for China illustrated in Figure 8 for India the energy structure effect in 2013 and the energy intensity effect from 2014 to 2018 had promoting roles in the decoupling index respectively as shown by the decoupling index progress in Figure 9 and Table 12

Table 11. The total decoupling between CO₂ emissions and agricultural growth, China

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	-0.00004	-0.0006	-7.03	4.23	-2.80	SND
2014	0.000006	-0.003	-2.34	1.54	-0.81	SND
2015	0.000001	0.0006	-0.71	0.03	-0.68	SD
2016	0.000006	-0.00008	-0.36	0.58	0.21	WD
2017	-0.00002	-0.002	-0.01	0.44	0.42	WD
2018	0.00000009	-0.002	-7.32	-0.21	-7.54	SD
2019	0.00006	-0.001	-2.18	2.79	0.61	WD

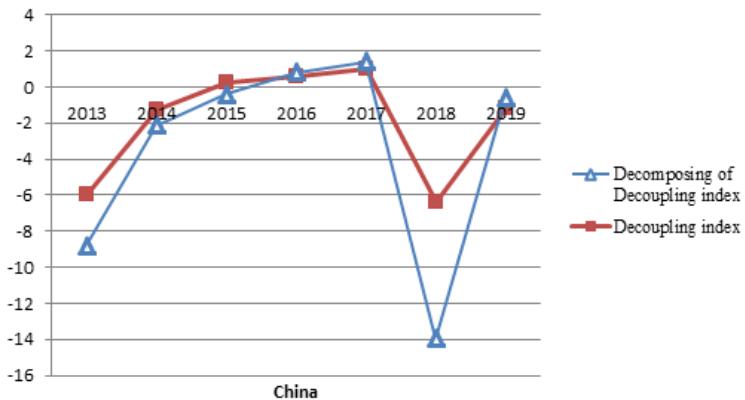
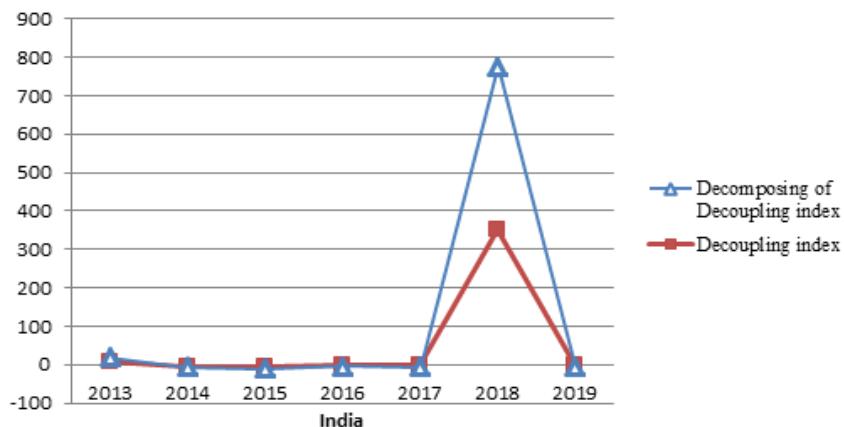
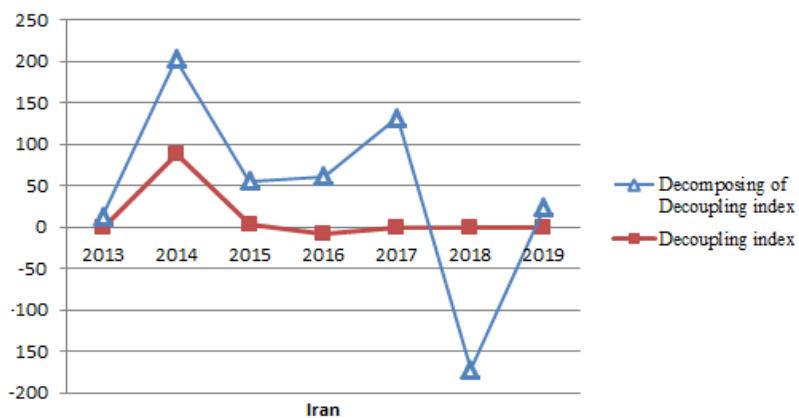


Figure 8. The total decoupling trend in China

Table 12. The total decoupling between CO₂ emissions and agricultural growth, India

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	0.00001	0.276	7.471	2.431	10.17	END
2014	0.0004	-0.030	-4.440	1.949	-2.520	SD
2015	-0.0009	-0.067	-5.612	-0.419	-6.099	SD
2016	0.00007	-0.039	-2.820	0.340	-2.519	SD
2017	0.00002	0.136	-3.767	0.974	-2.655	SD
2018	-0.0005	10.42	341.79	70.98	423.20	RD
2019	-0.00003	-0.007	-3.980	1.116	-2.871	SD



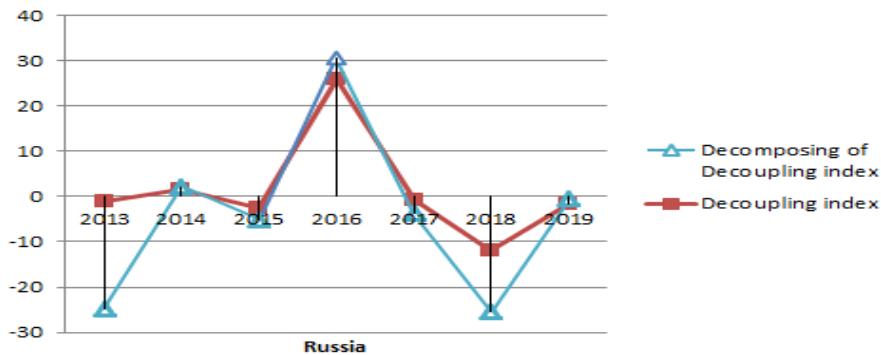

Figure 9. The total a decoupling trend in India

The results in Table 13 show that from 2013 to 2019, with the exception of 2018, the decoupling state in Iran was expansive negative decoupling. A comparison with the previous status of the decoupling index in Table 3 indicates that the global innovation efficiency effect played an inhibiting role in

2013 and 2019, while the energy intensity effect was inhibiting in 2016 and 2017. Throughout the entire 2013-2019 period, the coefficient effect consistently played a promoting role in the decoupling index. The total decoupling index for Iran is presented in Figure 10.

Table 13. The total decoupling between CO₂ emissions and agricultural growth, Iran

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	0.004	3.552	4.633	4.763	12.954	END
2014	-0.080	57.75	9.435	48.57	115.68	END
2015	-0.00009	18.41	17.223	18.145	53.785	END
2016	0.00005	19.34	30.527	19.171	69.09	END
2017	0.027	43.85	45.055	43.132	132.06	END
2018	-0.036	-58.46	-57.646	-55.827	-171.97	SND
2019	-0.008	6.745	8.285	8.585	23.60	END


Figure 10. The total decoupling trend in Iran

According to the results in Table 14, the decoupling state in Russia shifted from expansive negative decoupling to weak decoupling in 2014, indicating that the coefficient effect played a promoting role in the decoupling index for both 2013 and 2014. An expansive coupling state was observed in 2019, which signifies no discernible

relationship between carbon dioxide emissions and agricultural growth. The energy intensity effect played a promoting role in decoupling during 2015-2016, while the global innovation efficiency effect was the promoting factor during 2017-2018. The trend of the decoupling index for Russia is illustrated in Figure 11.

Table 14. The total decoupling between CO₂ emissions and agricultural growth, Russia

Period	ε_{EC}	ε_{ES}	ε_{EI}	ε_{GE}	Decoupling index	State
2013	-21.306	-0.047	-2.049	-0.227	-23.631	SD
2014	-1.175	0.189	0.503	0.996	0.514	WD
2015	-0.225	0.218	-3.453	0.905	-2.554	SD
2016	-22.268	3.133	21.886	1.987	4.738	RD
2017	-1.729	0.451	-2.290	0.634	-2.933	SND
2018	-1.381	0.816	-13.842	0.825	-13.581	SND
2019	1.152	-0.219	-2.300	2.418	1.051	EC

Figure 11. The total a decoupling trend in Russia

Conclusion

This paper compares the decoupling of CO₂ emissions from agricultural growth in the top nine CO₂-emitting countries from 2013 to 2019 using an extended LMDI model to decompose the decoupling index into four drivers the carbon emission coefficient energy intensity global innovation efficiency effect and structural effect The results showed that from 2013 to 2019 Korea's decoupling state shifted from recessive decoupling to strong negative decoupling while Iran Russia and the United States maintained a stable strong decoupling India's decoupling state progressed from expansive negative decoupling to strong decoupling China achieved strong decoupling in 2019 Japan remained in a state of strong negative decoupling and Germany transitioned from weak decoupling to strong decoupling Decomposition of the total decoupling index revealed that the energy intensity and global innovation efficiency effects were the main promoters of decoupling in Korea China the United States and Germany while in Canada the energy intensity effect was the most critical factor for reducing carbon emissions

In Russia the energy intensity global innovation efficiency and structure effects collectively drove the carbon emission reduction rate to exceed the economic growth rate The carbon emission coefficient was the most important factor in Iran's decoupling and the energy intensity and structure effects promoted decoupling in India The global innovation efficiency effect was also a main contributor to emissions reduction in Korea Japan the United States Germany and China Therefore governments are advised to strategically leverage both the energy intensity and global innovation efficiency factors to effectively reduce agricultural CO₂ emissions.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Funding

This research was supported by University of Jiroft under the grant number 2824-03-2-312303

References

- Agheli, L. 2015. Estimating the demand for diesel in agriculture sector of Iran. *International Journal of Energy Economics and Policy*. 5(3), 660-667.
- Ahmed, V., and Zeshan, M. 2014. Decomposing change in energy consumption of the agricultural sector in Pakistan. *Agrarian South: Journal of Political Economy*. 3(3), 369-402.
- Ceylan, Z. 2020. Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models. *Journal of Forecasting*. 39(6), 944-956.
- Chontanawat, J., Wiboonchutikula, P., and Buddhivanich, A. 2020. An LMDI decomposition analysis of carbon emissions in the Thai manufacturing sector. *Energy Reports*. 6, 705-710.
- De Jonge, A. M. 2004. Eco-efficiency improvement of a crop protection product: the perspective of the crop protection industry. *Crop Protection*. 23(12), 1177-1186.

Nachrowi, N. D., Lubis, A. F., and Soetjipto, W. 2019. Decomposition analysis of decoupling of manufacturing co 2 emissions in indonesia. International Journal of Business and Society. 20.

Engo, J. 2018. Decomposing the decoupling of CO2 emissions from economic growth in in Cameroon. Environmental Science and Pollution Research. 25(35), 35451-35463.

Fan, J. L., Da, Y. B., Wan, S. L., Zhang, M., Cao, Z., Wang, Y., and Zhang, X. 2019. Determinants of carbon emissions in 'Belt and Road initiative'countries: a production technology perspective. Applied Energy. 239, 268-279.

Chontanawat, J., Wiboonchutikula, P., and Buddhivanich, A. 2020. Decomposition analysis of the carbon emissions of the manufacturing and industrial sector in Thailand. Energies. 13(4), 798.

Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., ... and Aghel, H. 2011. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied energy. 88(1), 283-288.

Goodridge, P., Haskel, J., and Wallis, G. 2013. Can intangible investment explain the UK productivity puzzle?. National Institute Economic Review. 224(1), R48-R58.

Gu, S., Fu, B., Thriveni, T., Fujita, T., and Ahn, J. W. 2019. Coupled LMDI and system dynamics model for estimating urban CO2 emission mitigation potential in Shanghai, China. Journal of Cleaner Production. 240, 118034.

Hossain, M. A., and Chen, S. 2022. The decoupling study of agricultural energy-driven CO2 emissions from agricultural sector development. International Journal of Environmental Science and Technology. 19(5), 4509-4524.

Huo, T., Ma, Y., Yu, T., Cai, W., Liu, B., and Ren, H. 2021. Decoupling and decomposition analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China. Environmental Impact Assessment Review. 86, 106487.

Jackson, R. B., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Le Quéré, C., and Peters, G. P. 2019. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environmental Research Letters. 14(12), 121001.

Jiang, R., Li, R., and Wu, Q. 2019. Investigation for the decomposition of carbon emissions in the USA with CD function and LMDI methods. Sustainability. 11(2), 334.

Jorgenson, A. K., and Clark, B. 2012. Are the economy and the environment decoupling? A comparative international study, 1960–2005. American Journal of Sociology. 118(1), 1-44.

Kong, Y., He, W., Yuan, L., Shen, J., An, M., Degefu, D. M., ... and Wan, Z. 2019. Decoupling analysis of water footprint and economic growth: A case study of Beijing–Tianjin–Hebei Region from 2004 to 2017. International Journal of Environmental Research and Public Health. 16(23), 4873.

Li, S., Gong, Q., and Yang, S. 2019. Analysis of the agricultural economy and agricultural pollution using the decoupling index in Chengdu, China. International Journal of Environmental Research and Public Health. 16(21), 4233.

Li, R., and Jiang, R. 2020. Investigating effect of R and D investment on decoupling environmental pressure from economic growth in the global top six carbon dioxide emitters. Science of the Total Environment. 740, 140053.

Long, L., and Wang, X. A. 2017. Study on the Relationship among Ecological Loss, Economic Growth and Welfare Level in the Process of Urbanization in China: Based on Tapiol Decoupling Analysis and Granger Causality Test. Inq. Into Econ. (2017), 3.

Lynch, J., Cain, M., Frame, D., and Pierrehumbert, R. 2021. Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in sustainable food systems. 4, 518039.

Ma, M., and Cai, W. 2019. Do commercial building sector-derived carbon emissions decouple from the economic growth in Tertiary Industry? A case study of four municipalities in China. Science of the Total Environment. 650, 822-834.

Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., ... and Hackmann, B. 2020. Realization of Paris Agreement pledges may limit warming just below 2 C. Nature. 604(7905), 304-309.

Mushtaq, K., Abbas, F., Abedullah, and Ghafoor, A. 2007. Energy use for economic growth: cointegration and causality analysis from the agriculture sector of Pakistan. *The Pakistan Development Review*. 1065-1073.

Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., ... and Zhang, H. 2014. Anthropogenic and natural radiative forcing. *Climate Change 2013-The Physical Science Basis*. 659-740.

Galko, E., and Jayet, P. A. 2011. Economic and environmental effects of decoupled agricultural support in the EU. *Agricultural Economics*. 42(5), 605-618.

Peng, X., Tao, X., Zhang, H., Chen, J., and Feng, K. 2021. CO₂ emissions from the electricity sector during China's economic transition: from the production to the consumption perspective. *Sustainable Production and Consumption*. 27, 1010-1020.

Schandl, H., Hatfield-Dodds, S., Wiedmann, T., Geschke, A., Cai, Y., West, J., ... and Owen, A. 2016. Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. *Journal of cleaner production*. 132, 45-56.

Sebri, M., and Abid, M. 2012. Energy use for economic growth: A trivariate analysis from Tunisian agriculture sector. *Energy policy*. 48, 711-716.

Sun, D., Cai, S., Yuan, X., Zhao, C., Gu, J., Chen, Z., and Sun, H. 2020. Decomposition and decoupling analysis of carbon emissions from agricultural economic growth in China's Yangtze River economic belt. *Environmental Geochemistry and Health*. 44(9), 2987-3006.

Tapio, P. 2005. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. *Transport policy*. 12(2), 137-151.

Tunç, G. İ., Türüt-Aşık, S., and Akbostancı, E. 2009. A decomposition analysis of CO₂ emissions from energy use: Turkish case. *Energy Policy*. 37(11), 4689-4699.

Wallis, G. E. 2012. Essays in understanding investment (Doctoral dissertation, UCL (University College London)).

Wang, Q., and Su, M. 2020. Drivers of decoupling economic growth from carbon emission—an empirical analysis of 192 countries using decoupling model and decomposition method. *Environmental Impact Assessment Review*. 81, 106356.

Wang, Q., and Wang, S. 2019. A comparison of decomposition the decoupling carbon emissions from economic growth in transport sector of selected provinces in eastern, central and western China. *Journal of Cleaner Production*. 229, 570-581.

Wang, Q., and Jiang, R. 2020. Is carbon emission growth decoupled from economic growth in emerging countries? New insights from labor and investment effects. *Journal of Cleaner Production*. 248, 119188.

Wang, Q., Su, M., and Li, R. 2018. Toward to economic growth without emission growth: The role of urbanization and industrialization in China and India. *Journal of cleaner production*. 205, 499-511.

World Bank., 2018. World Development Indicators: Agricultural Methane Emissions. [Dataset]. Available at <https://data.worldbank.org/indicator/en.atm.meth.kt.ce> (accessed Jan 20, 2020).

Wu, Y., Tam, V. W., Shuai, C., Shen, L., Zhang, Y., and Liao, S. 2019. Decoupling China's economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). *Science of the Total Environment*. 656, 576-588.

Yi, P., Fang, S., and Ma, C. 2014. Decoupling evaluation of tourism economic growth and eco-environmental pressure in geoparks: a case study of Songshan Mountain World Geopark. *J. Nat. Resour*, 29. 1282-1296.

Yuan, S., and Peng, S. 2017. Trends in the economic return on energy use and energy use efficiency in China's crop production. *Renewable and Sustainable Energy Reviews*, 70, 836-844.

Zaman, K., Khan, M. M., Ahmad, M., and Rustam, R. 2012. The relationship between agricultural technology and energy demand in Pakistan. *Energy Policy*. 44, 268-279.

Zaekan, z., Nacrowi, D. N., F.L, A., Soetjipto, W., 2019. Decomposition Analysis of Decoupling of Manufacturing CO₂ Emissions Indonesia. *International Journal of Business and Society*. 20(SI):91-106.

Zhang, C., Su, B., Zhou, K., and Yang, S. 2019. Analysis of electricity consumption in China (1990–2016) using index decomposition and decoupling approach. *Journal of cleaner production*. 209, 224-235.

Zhang, M., Mu, H., Ning, Y., and Song, Y. 2009. Decomposition of energy-related CO₂ emission over 1991–2006 in China. *Ecological Economics*. 68(7), 2122-2128.

Zhang, S., Wang, J., and Zheng, W. 2018. Decomposition analysis of energy-related CO₂ emissions and decoupling status in China's logistics industry. *Sustainability*. 10(5), 1340.

Zhang, Y. 2013. Research on the decoupling distribution of energy consumption, carbon dioxide emissions and sustainable development of China's industry. *Res. Dev.* 1, 104-108.

Zhang, Y. J., and Da, Y. B. 2015. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. *Renewable and Sustainable Energy Reviews*. 41, 1255-1266.

Zhao, X., Zhang, X., and Shao, S. 2016. Decoupling CO₂ emissions and industrial growth in China over 1993–2013: the role of investment. *Energy Economics*. 60, 275-292.