

Environmental Resources Research (ERR)

Print ISSN: 2783-4832 Online ISSN: 2783-4670

The effects of recreation on the forest bird community in the North of Iran (Case study: Alangdareh Forest, Gorgan)

Malihe Boroughani¹, Hossein Varasteh Moradi^{1*}, Alireza Mikaeli Tabrizi¹, Ali Akbar Mohammadali Pour Malekshah²

- ¹ Environmental Sciences, Department Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- ² Forest Sciences Department Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Article Info	Abstract		
Article type: Research Article	Human population growth and increasing needs are causing significant environmental damage and disrupting natural processes. Industrialization has particularly contributed to ecosystem destruction, intensifying demands for recreational areas and thereby		
Article history: Received: October 2023 Accepted: September 2025	posing threats to protected zones and wildlife populations. Human activities and recreation also detrimentally affect ecosystems and forest bird populations. To investigate these impacts, two distinct forest zones were studied: Shastkalateh Protected Forest as a control and Alangdareh Recreational Forest as a treatment area. Bird species density and their relationship with environmental factors were		
Corresponding author: hvarasteh2009@yahoo.com	assessed using point-count sampling method. Data collected over a year from 100 survey points within each 25-meter radius revealed significant differences in bird species composition, density, and diversity between the two areas. Analysis of Similarity (ANOSIM) confirmed a substantial distinction (P=0.001) between Alangdareh Recreational Forest and Shastkalateh Protected Forest. Bird density, diversity, and species composition were notably higher in the protected forest, supported by SIMPER results and redundancy analysis. Habitat correlations identified two distinct bird species groups: one associated with specific features like rock cover in the recreational forest (e.g., Common Chiffchaff, Eurasian Golden Oriola) and another linked to characteristics such as dead tree decay.		
Keywords: Birds' community Alangdareh Forest Park Recreational activity	Oriole) and another linked to characteristics such as dead tree decay and large snags in the protected forest (e.g., Brambling, European Robin). Overall, this research underscores the negative impact of recreational activities on bird communities in Alangdareh Recreational Forest compared to the more pristine conditions of Shastkalateh Protected Forest, highlighting higher bird density and diversity in undisturbed virgin forests.		

Cite this article: Boroughani, Malihe; Varasteh Moradi, Hossein; Mikaeli Tabrizi, Alireza; Mohammadali Pour Malekshah, Ali Akbar. 2025. The effects of recreation on the forest bird community in the North of Iran (Case study: Alangdareh Forest, Gorgan). *Environmental Resources Research*, 13(2), 293-311.

© The Author(s). DOI: 10.22069/IJERR.2025.18498.1415 Publisher: Gorgan University of Agricultural Sciences and Natural Resources

Introduction

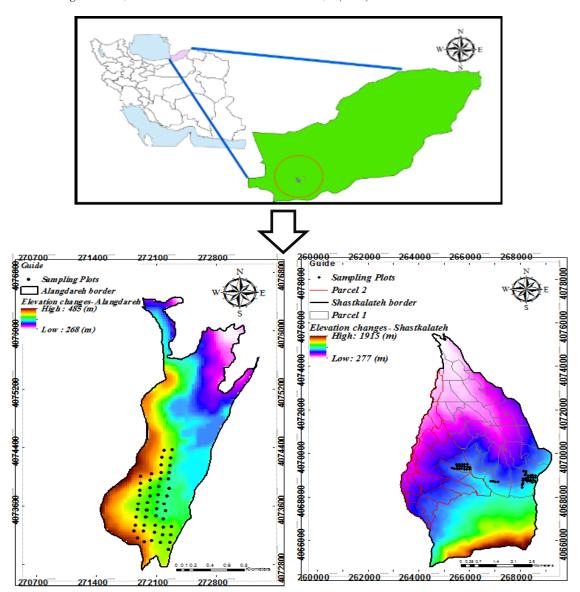
The expansion of cities due to population growth is one of the major reason for the loss of biodiversity in habitats, which negatively affects green spaces and environmental quality. Despite these challenges. urbanization continues to increase the demand for recreational areas and protected spaces (Worboys et al., 2001; Buckley, 2002; Stagol et al., 2010; Hindayani and Mardikaningsih, 2022). In recent decades, there has been a notable rise in outdoor recreational activities such as hiking, cycling, skiing, and snowshoeing, particularly in protected areas, which collectively receive approximately 8 billion visits annually worldwide (Balmford et al., 2015). These activities depend on specific infrastructure like hiking trails and ski slopes (De Groot et al., 2010; Paracchini et al., 2014), and consistently emphasizes research positive impacts on health, stress reduction, and overall well-being (Godbey, 2009; Buchecker and Degenhardt, 2015). This increasing popularity underscores the role of urban parks as essential spaces for outdoor recreation, offering city residents opportunities for natural experiences that enhance their health and well-being (Kaczynski and Henderson, 2007; Chiesura, 2004). Urban green spaces are crucial for recreation within city ecosystems. Numerous studies have highlighted their positive effects, including local climate regulation (Qiu et al., 2017), reduction of noise and air pollution (Song et al., 2018), and their role in enhancing urban environments while fulfilling residents' daily leisure needs (Sugiyama et al., 2008). Green spaces provide vital ecosystem services for both sustainable cities and people (Zhou et al., 2018). Although recreation is not the primary threat to global biodiversity, it often occurs in protected areas designated for species conservation, potentially resulting in disproportionate impacts. However, naturebased recreation plays a vital role in promoting human health and fostering connections with nature, which can encourage pro-environmental behaviors (Cooper et al., 2015). Understanding the effects of outdoor recreation on wildlife is for wildlife management, as recreational activities can disrupt wildlife

similarly to natural predators (Frid and Dill, 2002).

The utilization of forests, parks, conservation areas for recreation significantly increased, raising concerns about its ecological impacts (Cordell et al., 2008; Balmford et al., 2009). Activities such as trampling during migrations can degrade vegetation and alter species compositions towards more resilient types (Cole and Monz, 2002; Ballantyne and Pickering, 2015; Pickering and Barros, 2015). Leisure and tourism often lead to disturbances like vegetation damage, soil erosion, and various forms of pollution, affecting ecosystem processes and wildlife behaviors such as habitat use, foraging, and reproduction (Monz et al., 2013; Hammitt et al., 2015; Buxton et al., 2017; Gutzwiller et al., 2017). Additionally, nature-based tourism poses significant threats to endangered plant species and influences the dynamics of plant communities (Barros et al., 2015; Wraith and Pickering, 2017).

Forests host a substantial portion of global biodiversity (Coote et al., 2013). The primary threat to biodiversity lies in the loss and of transformation extensive naturally dynamic forests, largely driven by competing land uses (Angelstam and Donz-Breuss, 2004). Avian communities within forest ecosystems serve as crucial indicators of habitat quality and are widely used for biodiversity assessments across Europe (Gao et al., 2015; Gregory and van Strien, 2010). Birds play crucial roles in ecosystems, fulfilling vital functions such as seed dispersal, pollination, herbivory, predation (Peh et al., 2005). Monitoring bird populations involves assessing parameters like species richness, evenness, abundance, diversity, and density (Zakaria and Rajpar, 2013). Their unique biological characteristics enable birds to contribute significantly to natural processes and human activities, including pest control, rodent management, and seed dispersal (Rey Benayas et al., 2017; Carvalho et al., 2020; Simonov and Matantseva, 2020). Additionally, birds serve as indicators of environmental health, responding to human impacts by adjusting nesting behaviors and ecological group

diversity (Lebedinskii et al., 2019; Kuznetsova, 2021).


The research highlights several important aspects about birds and their habitat preferences. Species specialized for indoor environments rely on resources found within forests, while those adapted to forest edges utilize and adapt to these transitional habitats (Zakaria et al., 2014). Insectivorous birds, particularly those specialized for indoor habitats, are disproportionately affected by forest fragmentation and edge effects (Sodhi et al., 2004; Zakaria et al., 2014). Undisturbed forest habitats are crucial as shelters for birds that depend on these environments (Nor Hashim and Ramli, 2013). The structure of forests, including diversity and density of vegetation, plays a critical role in supporting bird diversity by providing essential resources for nesting and food (Khera et al., 2009). Researchers worldwide have explored how environmental variables, particularly forest structure, influence the distribution and abundance of bird species (Reich et al., 1999). Habitat also influences the daily activity patterns of small passerines, influencing behaviors related to foraging and predator avoidance (McCabe and Olsen, 2015; Reyes-Arriagada et al., 2015). Birds often adjust their activity patterns to balance food availability and predation risk, showing varied behaviors across different habitat types (Bednekoff and Houston, 1994; Macleod et al., 2005; McNamara et al., 1994; Reyes-Arriagada et al., 2015).

The impact of recreational activities on wildlife is a critical concern, particularly due to birds' sensitivity to habitat characteristics like vegetation cover, which makes them valuable indicators for habitat monitoring (Larson et al., 2016). Understanding the thresholds at which recreational activities affect species, positively or negatively, is essential for effectively managing protected areas. Researchers stress the need to move beyond simple hypothesis testing to identify specific disturbance thresholds that influence recovery processes. While habituation to human presence can mitigate behavioral responses, it may increase vulnerability to

predation or human-wildlife conflicts (Baudains and Lloyd, 2007; Geffory et al., 2015; Bejder et al., 2009). Animals may alter their habitat use patterns over time to minimize disturbance, affecting population dvnamics and community structure (Lesmerises et al., 2018; Botsch et al., 2017; Reed and Merenlender, 2008; Kangas et al., 2010). However, research outcomes vary widely across ecosystems and taxa. underscoring the need for systematic reviews and meta-analyses to synthesize findings and establish generalized impacts (Larson et al., 2016: Haddaway, 2015). Such comprehensive approaches are crucial for informing evidence-based management decisions and developing effective conservation strategies amidst increasing recreational pressures on protected areas globally (Schulze et al., 2018).

Materials and Methods Study area

The Alangdareh Forest Park extends from 54° 26' 7" to 54° 7' 30" North latitude and from 36° 47′ 36″ to 36° 48′ 36″ East longitude, with elevations ranging from 300 m to 480 m above sea level. It is located within the Ziarat forestry plan and the 2nd series of Naharkhoran, covering an area of 185 hectares. The park measures up to 2750 meters in length and 875 meters in width (Barze Kar, 2003). The Control Study Area, Shastkalateh Educational Research Forest, is situated 8 km southwest of Gorgan. This forest spans over 3716 hectares, divided into two series. The first series consists of 33 parcels totaling 1731.3 hectares, while the second series includes 31 parcels covering 1992 hectares. The first series is located between 36° 43' 30" to 36° 42' 30" North latitude and 54° 21' 6" to 54° 23' 30" East longitude, with elevations ranging from 210 m to 995 m above sea level (Moaiery and Mohammad Alipour Malekshah, 2006). The second series of Shastkalateh Forest spans from 36° 43' 30" to 36° 42' 30" North latitude and from 54° 21' 6" to 54° 23' 30" East longitude, with elevations varying from 250 m to 1935 m above sea level (Moaiery and Mohammad Alipour Malekshah, 2006).

Figure 1. The location of the study region in Iran – Golestan Province.

Research method

Sampling of birds and environmental variables

Bird sightings and habitat variables were recorded over one year at 100 survey points, each within a 25-meter radius (Watson et al., 2004). The survey sites were located in the areas protected of Alangdareh Shastkalateh. Point counting was used for bird sampling (Legendre and Legendre, 1998), with a standardized 5-minute stop at each point to ensure sampling accuracy and safety (Brand and George, 2001). Birds were then observed for an additional 10 minutes following the rest period (Atkinson, 2003). Data on birds and environmental variables

were collected within a 25-meter radius of each survey point (Castelletta et al., 2005), a distance chosen due to the challenges of bird identification beyond this range in forest environments. Fieldwork was conducted from sunrise to 10 AM under favorable weather conditions without rain or storms (Vareste, 2011). Environmental variables included metrics such as litter depth, canopy cover density, percentage of grass and stone cover, log decay stage, tree diameter at breast height (dbh), tree height, number of standing dead trees, temperature, and humidity.

Data analysis

Distance 7 software was utilized to calculate

bird density. Additionally, **CANOCO** software was employed to investigate the relationship between bird abundance and habitat variables. Prior to ordination analysis in CANOCO, gradient lengths were measured for redundancy analysis (RDA) and canonical correspondence analysis (CCA). These gradient lengths represent beta diversity in community composition. Generally, if the gradient length is less than 3, the linear method is preferred. Since the beta gradient length was less than 3 in this research, redundancy analysis (RDA) was selected. Furthermore, CAP4 software was used to analyze bird diversity. Analysis of similarity (ANOSIM) was employed to differences in bird species composition the two regions. **Similarity** between

percentage (SIMPER) was used to determine species density and dominance in different habitats. To analyze the pattern of bird species composition between Shastkalateh Forest and Alangdareh Recreational Forest Park, both Analyses of Similarity (ANOSIM) and Similarity Percentage (SIMPER) were conducted.

Results

Bird observations were recorded in the Shastkalateh Protected Forest area and Alangdareh Recreational Forest Park. In the Shastkalateh Forest area, 963 bird observations were made across 28 species. Similarly, in the Alangdareh Forest Park area, 657 bird observations were recorded spanning 23 species (see Figure 2, Figure 3 and Table 1).

Table 1. The number of bird individuals detected in forest plots.

Scientific name	English name	Number of Individuals			
Scientific name	English name	Shastkalateh Forest	Alangdareh Forest Park		
Turdus merula	Blackbird	74	32		
Turdus ruficollis	Black-throated Thrush	3	2		
Dryocopus martius	Black Woodpecker	10	0		
Fringilla montifringilla	Brambling	69	42		
Cettia cetti	Cetti`s Warbler	63	16		
Periparus ater(Parus ater)	Coal Tit	117	130		
Dendrocopos major	Great Spotted Woodpecker	61	29		
Parus major	Great Tit	135	66		
Columba palumbus	Common Wood Pigeon	12	0		
Aegithalos caudatus	Long-tailed Tit	3	12		
Sitta europaea	Eurasian Nuthatch	111	38		
Erithacus rubecula	European Robin	119	37		
Turdus philomelos	Song Thrush	39	3		
Troglodytes troglodytes	Winter Wren	37	3		
Turdus viscivorus	Mistle Thrush	5	0		
Fringilla coelebs	Common Chaffinch	35	95		
Corvus cornix	Hooded Crow	0	123		
Phylloscopus collybita	Common Chiffchaff	1	5		
Dendrocopos minor	Lesser Spotted Woodpecker	18	3		
Certhia familiaris	Eurasian Tree creeper	8	1		
Ficedula parva	Red-breasted Flycatcher	13	2		
Turdus iliacus	Redwing	4	0		
Picus viridis	European Green Woodpecker	4	0		
Luscinia megarhynchos	Common Nightingale	9	2		
Phoenicurus phoenicurus	Common Redstart	1	0		
Garrulus glandarius	Eurasian Jay	1	0		
Dendrocopos syriacus	Syrian Woodpecker	4	0		
Cuculus canorus	Common Cuckoo	5	0		
Carduelis chloris	European Greenfinch	0	6		
Passer domesticus	House Sparrow	0	5		
Oriolus oriolus	Eurasian Golden Oriole	0	3		
Sylvia atricapilla	Blackap	0	2		
Muscicapa striata	Spotted Flycatcher	2	0		

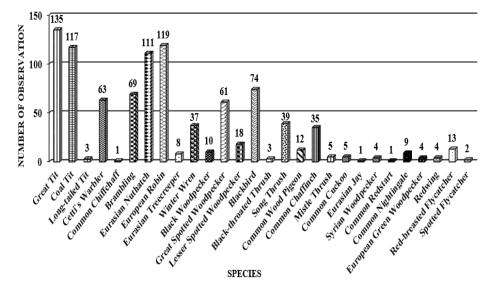


Figure 2. The abundance and number of bird species observations in the Shastkalateh Forest.

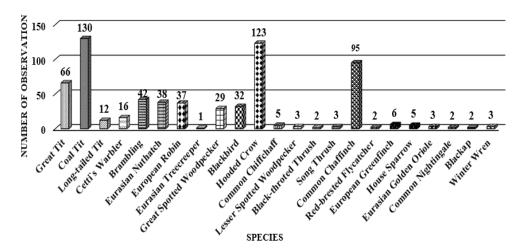


Figure 3. The abundance and number of bird species observations in the Alangdareh Forest Park.

According to Table 2, in Alangdareh Forest Park area, 67% of the species composition was accounted for by three common species: Common Chaffinch, Coal Tit, and Great Tit. Among these, the Common Chaffinch had the highest percentage of species composition and the highest density among all birds at 31.7094%. Additionally, the Common Chaffinch was identified as the dominant species in this area.

In Shastkalateh Forest, more than 49% of the species composition was attributed to three species: European Robin, Great Tit, and Coal Tit. Here, the European Robin had the largest share in species composition and the highest density among the birds, accounting for 18.4885%. Furthermore, the European Robin was recognized as the dominant species in this forest area. Moreover, there was a significant different between Shastakalate Forest and Alangdareh Forest Park (P=0.001).

Table 2. Analysis of the similarity percentage (SIMPER) for species composition of forest birds in

Alangdareh Forest Park and Shastakalateh Forest.

Name of the species	Ave. abundance	Ave. similarity	contribution %	Cumulative %	
		Alangdareh			
Common Chaffinch	1.9	7.78772	31.7094	31.7094	
Coal Tit	2.6	6.24356	25.422	57.1314	
Great Tit	1.32	2.50537	10.2011	67.3326	
Blackbird	0.64	1.92106	7.822	75.1546	
European Robin	0.74	1.90646	7.76257	82.9171	
Eurasian Nuthatch	0.76	1.40458	5.71907	88.6362	
Hooded Crow	2.46	1.34216	5.4649	94.1011	
		Shastkalateh			
Erithacus rubecula	2.38	6.64912	18.4885	18.4885	
Great Tit	2.7	6.21473	17.2806	35.769	
Coal Tit	2.34	4.95492	13.7776	49.5466	
Eurasian Nuthatch	2.22	4.06009	11.2894	60.836	
Great Spotted Woodpecker	1.22	3.33466	9.27232	70.1084	
Blackbird	1.48	2.67684	7.44318	77.5515	
Cetti`s Warbler	1.26	2.05475	5.7134	83.2649	
Brambling	1.38	1.63377	4.54283	87.8078	
Song Thrush	0.78	1.26051	3.50496	91.3127	

Tabel 3. Estimation of average bird density (One per hectare \pm Standard deviation) in Shastkalateh Forest and Alangdareh Forest Park.

and Alangdaren Forest Park.						
	Ave. density per hectare ±standard deviation		Model used			
Name of the species	different season of the year- Alangdareh Forest Park	different season of the year- Shastkalateh Forest	different season of the year- Alangdareh Forest Park	different season of the year Shastkalateh Forest		
Blackbird	3.26 ± 0.738	10.90 ± 2.37	Uniform/Cosine	Hazard/Cosine		
Black-throated Thrush	0.565 ± 0.395	0.394 ± 0.222	Uniform/Cosine	Uniform/Cosine		
Black Woodpecker	0	1.105 ± 0.386	-	Uniform/Cosine		
Brambling	19.501 ± 10.191	32.617 ± 9.008	Uniform/Cosine	Hazard/Cosine		
Cetti`s Warbler	11.020 ± 8.857	27.210 ± 16.328	Hazard/Cosine	Hazard/Cosine		
Coal Tit	56.120 ± 13.075	53.331 ± 11.290	Hazard/Cosine	Hazard/Cosine		
Great Spotted Woodpecker	3.205 ± 1.048	9.768 ± 9.090	Uniform/Polynomial	Half-normal/Cosine		
Great Tit	28.964 ± 7.637	44.234 ± 6.887	Uniform/Cosine	Uniform/Polynomial		
Common Wood Pigeon	0	1.909 ± 1.171	-	Uniform/Polynomial		
Long-tailed Tit	11.160 ± 11.282	0.477 ± 0.352	Hazard/Cosine	Uniform/Cosine		
Eurasian Nuthatch	15.087 ± 4.017	35.873 ± 7.856	Uniform/Cosine	Hazard/Cosine		
European Robin	11.514 ± 2.746	62.027 ± 10.408	Uniform/Cosine	Hazard/Cosin		
Song Thrush	0.848 ± 0.479	4.310 ± 0.860	Uniform/Cosine	Uniform/Polynomial		
Winter Wren	3.897 ± 2.880	23.352 ± 7.428	Uniform/Polynomial	Hazard/Cosine		
Mistle Thrush	0	0.552 ± 0.236	-	Uniform/Cosine		
Common Chaffinch	34.637 ± 5.711	8.625 ± 2.315	Uniform/Cosine	Uniform/Cosine		
Hooded Crow	63.882 ± 33.154	0	Half-normal/Cosine	-		
Common Chiffchaff	4.973 ± 2.561	2.546 ± 2.546	Uniform/Polynomial	Uniform/Polynomial		
Lesser Spotted Woodpecker	1.909 ± 1.079	1.989 ± 0.736	Uniform/Cosine	Uniform/Cosine		
Eurasian Tree creeper	4.547 ± 4.547	1.114 ± 0.455	Half-normal/Polynomial	Uniform/Polynomial		
Red-breasted Flycatcher	0.497 ± 0.497	5.132 ± 2.046	Uniform/Polynomial	Uniform/Cosine		
Redwing	0	0.442 ± 0.214	-	Uniform/Cosine		
European Green Woodpecker	0	0.481 ± 0.233	-	Uniform/Polynomial		
Common Nightingale	1.989 ± 1.392	1.183 ± 0.447	Uniform/Polynomial	Uniform/Polynomial		
Common Redstart	0	3.183 ± 3.183	-	Half-normal/Polynomial		
Eurasian Jay		1.989 ± 1.989	-	Half-normal/Cosine		
Syrian Woodpecker	0	0.636 ± 0309	-	Uniform/Polynomial		
Common Cuckoo	0	0.795 ± 0.409	-	Uniform/Cosine		
European Greenfinch	1.178 ± 0.666	0	Uniform/Polynomial	-		
House Sparrow	2.630 ± 1.354	0	Uniform/Polynomial	-		
Eurasian Golden Oriole	0.305 ± 0.172	0	Uniform/Polynomial	-		
Blackap	0.649 ± 0.649	0	Uniform/Cosine	-		

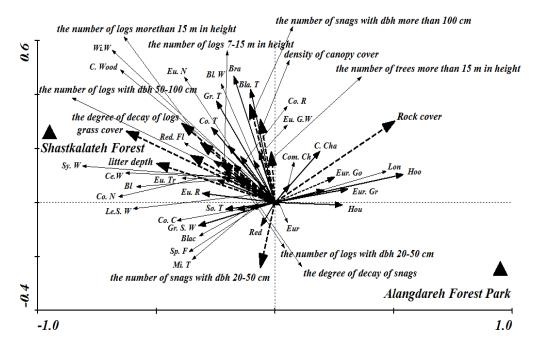
Spotted Flycatcher $0 + 0.649 \pm 0.454 + 0.454 = 0.454$
--

Data analysis was conducted to calculate the bird density of 28 species in the Shastkalateh Protected Forest region and 23 species in Alangdareh Forest Park. Birds exhibited varying density patterns. Table 3 displays the density of each bird species in both the Shastkalateh Protected Forest Alangdareh Forest Park. In the Shastkalateh Protected Forest, the European Robin showed the highest density per hectare (62.027 ± 10.408), while the Black-throated Thrush had the lowest density per hectare (0.394 ± 0.222) . Conversely, in Alangdareh Forest Park, the Hooded Crow exhibited the highest density (63.882 ± 33.154) , and the Eurasian Golden

Oriole had the lowest density per hectare (0.305 ± 0.172) .

Ordination and correspondence analysis of bird's community

According to Table 4, redundancy analysis was used to examine the relationship between forest bird communities and environmental variables. The results reveal a strong correlation between the abundance of bird communities and these environmental factors. The ordination of all species showed significant gradients across environmental variables. Table 4 presents the ordination of birds based on these environmental variables.


Tabel 4. Redundancy analysis of bird species in the two forest regions of Shastkalateh Forest and Alangdareh Forest Park.

Phrase		Axes			
		2	3	4	1.000
Eigenvalues	0.162	0.050	0.034	0.031	
Species- environment correlations	0.609	0.563	0.659	0.632	
Cumulative percentage variance of species data	16.2	21.2	24.6	27.7	
Cumulative percentage variance of species-environment relation	50.7	66.3	76.8	86.5	
Sum of all canonical eigenvalues					0.320

According to Table 4, there is a strong correlation between the abundance of bird communities and environmental variables. The first two axes explain 21.2% of the variation in species data that can be attributed to environmental factors. Furthermore, the correlation between bird species and environmental variables for these first two axes was 60.9% and 56.3%, respectively. This correlation indicates how well environmental variables explain composition of bird communities. In Figure 3, the first axis of redundancy analysis separates Shastkalateh Forest from Alangdareh Forest Park, with the two main axes showing the greatest changes in the community structure. The first axis divides the bird community into two main groups. The first group includes House Sparrow, Long-tailed Tit, Chaffinch, European Greenfinch, Eurasian Golden Oriole, Eurasian Jay, Common Chiffchaff, and Hooded Crow, which show a positive correlation with rock cover in the Alangdareh Forest Park area (Figure 4). Among these,

Hooded Crow exhibits the strongest positive correlation with rock cover. The second group consists of Brambling, European Robin, Great Spotted Woodpecker, Coal Eurasian Treecreeper, Cetti's Warbler, Woodpigeon, Great Tit, Lesser Spotted Woodpecker, Syrian Woodpecker, Winter Wren, Song Thrush, Common Nightingale, Red-breasted Flycatcher, Redwing, Black Woodpecker, and Eurasian Nuthatch. This group shows a positive correlation with grass cover, log decay degree, number of logs over 15 m in height, litter depth, number of logs with diameter at breast height (dbh) between 50-100 cm, number of snags with dbh over 100 cm, canopy cover density, and number of logs 7-15 m in height in Shastkalateh Forest. Winter Wren, Red-breasted Flycatcher, European Robin, and Common Nightingale exhibit the strongest positive correlations with grass cover, litter depth, and log decay degree in this area. Litter depth, grass cover, log decay degree, and number of snags with dbh over 100 cm significantly influence the

density of these species compared to other habitat variables. Additionally, Winter Wren, Red-breasted Flycatcher, Coal Tit, Cetti's Warbler, European Robin, and Common Nightingale show a positive correlation with litter depth. Great Spotted Woodpecker, Lesser Spotted Woodpecker, Black Woodpecker, Brambling, and Eurasian Nuthatch are positively correlated with the number of snags with dbh over 100 cm, canopy cover density, and number of snags with dbh between 20-50 cm.

Figure 4. Redundancy correspondence analysis of bird species and environmental variables in the two forest regions of Shastkalate Forest and Alangdareh Forest Park.

Eur: Eurasian Jay. Hou: House Sparrow. Eur. Gr: European Greenfinch. Hoo: Hooded Crow. Lon: Long-tailed Tit. Red: Redwing. Eur. Go: Eurasian Golden Oriole. C. Cha: Common Chaffinch. Com. Ch: Common Chiffchaff. Eu. G. W: European Green Woodpecker. Co. R: Common Redstart. Eu. N: Eurasian Nuthatch. Bla. T: Black-throated Thrush. Bra: Brambling. Mi. T: Mistle Thrush. Sp. F: Spotted Flycatcher. Blac: Blackap. Gr. S. W: Great Spotted Woodpecker. Co. C: Common Cuckoo. So. T: Song Thrush. Eu. R: European Robin. Le. S. W: Lesser Spotted Woodpecker. Co.N: Common Nightingale. Bl: Blackbird. Eu. Tr: Eurasian Treecreeper. Ce. W: Cetti's Warbler. Sy. W: Syrian Woodpecker. Co. T: Coal Tit. Red. Fl: Red-brested Flycatcher. Bl. W: Black Woodpecker. Gr. T: Great Tit. C. Wood: Common Wood Pigeon. Wi. W: Winter Wren.

Discussion

The study conducted in Golestan Province and compared bird communities between Shastkalateh Protected Forest Alangdareh Recreational Forest Park. We found higher bird density, species diversity, composition in the more intact Shastkalateh Protected Forest. The study highlighted significant negative impacts of recreation on bird communities in Alangdareh Recreational Forest Park. In contrast, Shastkalateh Protected Forest hosted more diverse bird species throughout the seasons. The study identified the most densely populated bird species in these two distinct forest areas: Shastkalateh Protected Forest and Alangdareh Recreational Forest Park. In Shastkalateh Protected Forest, the European Robin predominated across different seasons, indicating high density and dominance. On the other hand, the Hooded Crow, Coal Tit, and Common Chaffinch were dominant in Alangdareh Recreational Forest

Specifically, the Common Chaffinch was noted for its highest density and dominance among all species there. Woodpeckers, Eurasian Nuthatch, and Wren were identified as dependent species in the central forest area, showing a positive correlation with various structural elements such as the decay of logs and snags, density of canopy cover, and characteristics of trees like height and diameter. This indicates that these species rely on specific forest structures for nesting, cover, and food sources. Overall, the study emphasizes the critical relationship between forest structure and bird diversity and demonstrated in abundance, as Shastkalateh Protected Forest (Lohr et al., 2002).

Ruczynski et al. (2005) emphasize the critical role of biodiversity in maintaining the resilience of forest ecosystems. Biodiversity is fundamental for ensuring the adaptability of communities and the sustainable provision of ecosystem services, as highlighted by the Millennium Ecosystem Assessment (MEA, 2005) and Proenca et al. (2010). Biodiversity encompasses various spatial scales and includes components related to forest structure (e.g., tree dimensions, canopy deadwood, undergrowth), complexity, composition (e.g., diversity within and between species or communities), and function (e.g., succession, decomposition, nutrient cycling), as outlined by Canadian Forest Service (1995) and Ferris et al. (2000).

Indicators of forest structure are crucial for assessing biodiversity, focusing on the relationship between habitat characteristics and the abundance of forest-dwelling taxa, as noted by Lindenmayer et al. (2000) and McElhinny et al. (2006). Examples of such structural indicators include the frequency of uprooted trees (Angelstam and Donz-Breuss, 2004) and the quantity, quality, and diversity of deadwood (Lassauce et al., 2011). These indicators help gauge the health and diversity of forest ecosystems, essential for their conservation and sustainable management.

Deadwood plays a crucial role in biodiversity by serving as habitat for insects, influenced by interactions with fungi and microclimatic conditions (Wallace, 1869; Weslien et al., 2011; Kostanjsek et al., 2018). Specific types of deadwoods support specialized insect and fungal associations, benefiting species like Hermit beetle and white-backed woodpecker (Ranius and Hedin, 2001; Martikainen et al., 1998). Moreover, forests with abundant deadwood exhibit higher bat species richness (Tillon et al., 2016), while deadwood and mature trees provide essential shelter and nesting sites for forest birds and mammals (Lindenmayer and Ough, 2006). This promotes biodiversity at higher trophic levels by enhancing food availability, accessibility, and habitat suitability al., 2018). (Kortmann et Deadwood microhabitats on old-growth trees further support diverse ecosystem services for various forest taxa (Larrieu et al., 2018; Michel and Winter, 2009; Paillet et al., 2017). Furthermore. the abundance of tree microhabitats provided by living habitat trees is considered a valuable indicator of standlevel biodiversity (e.g., Larrieu et al., 2014; Winter and Muller, 2008). Tree microhabitats provide substrate and shelter for multiple taxa, including structural features such as cavities, dead crown wood, mistletoe, cracks, nests, and epiphytes, among others (Larrieu et al., 2018; Paillet et al., 2018). Conserving the diversity of tree microhabitats in sufficient abundance supports various species, making it crucial for maintaining biodiversity, especially invertebrates and fungi. It can also accelerate the recovery of ecosystem functions after disturbance and forest management measures (Franklin, 1989: Simonsson et al., 2015).

Conserving and maintaining biodiversity is considered crucial for supporting the density of forest birds, particularly species sensitive to changes and disruptions that depend on the core and more pristine areas of forest ecosystems. Woodpeckers and nuthatches, which are species associated with old-growth forests characterized by tall trees and large diameters. are particularly noteworthy (Maller et al., 2009). Many sources have highlighted the positive impact of both standing dead trees and mature trees on enhancing bird diversity. These trees are crucial not only for animals but also for forest regeneration. Certain birds, like woodpeckers

that nest in tree cavities, prefer tall trees with dead wood and substantial diameters to maximize breeding success and minimize predation risks (Tiberio and Escalante-Pliego, 2006). The survival of five bird species depends on the continuous presence of large trees and shrubs. Dead trees, unlike living ones, serve as foraging sites for birds (Desrochers and Imbeau, 2000). abundance provides valuable insights into the structural complexity of forests. Since the 1960s, studies (e.g., MacArthur MacArthur, 1961) have shown that bird responses to structural complexity generally positive. The theory predicts that species richness increases with the diversity of resources associated with the forest canopy structure (MacArthur, 1984).

Subsequent research consistently has demonstrated positive responses to forest structural complexity not only among birds but also across a wide range of forest organisms (e.g., Poulsen, 2002; Roth, 1976; Stein et al., 2014; Tews et al., 2004). Snags and fallen logs are critical indicators of forest biodiversity and essential for conservation planning, despite the need for more long-term studies on how retention forestry practices impact bird populations (Mikusinski et al., 2018). Preserving ecosystem biodiversity and forest structure requires managing human activities such as recreation and minimizing habitat fragmentation. Fragmentation and habitat loss reduce resources connectivity, exacerbating edge effects that affect species dispersal, colonization, and survival (Fahrig, 2003; Gaston et al., 2003; Warren et al., 2001; Stagol et al., 2007). Different species respond uniquely to habitat changes based on their traits and needs, influencing how fragmentation impacts bird populations (Galetti et al., 2013; Maggini et al., 2014; Bovo et al., 2018; Reino et al., 2018). Fragmentation alters animal behavior by modifying habitat structure. availability, predation patterns, and microclimatic conditions (Fahrig 2007; Ramos et al., 2020; Hardwick et al., 2015). These changes can disrupt circadian rhythms, foraging behavior, and activity patterns, affecting resource acquisition, energy balance, and vulnerability to predators

(Lehmann et al., 2012; Speakman, 2008; Oliveira Bezerra et al., 2020; Chaves et al., 2011). Roads exacerbate these impacts, with traffic noise affecting wildlife, particularly species attracted to roadsides for hunting, resulting in negative outcomes (Forman et al., 2003; Mason et al., 2016). Bird abundance or density often declines with increasing roadside noise levels (e.g., Reijnen et al., 1996; Silva et al., 2012). Studies have shown a 28% decrease in bird abundance due to noise, accompanied by changes in age structure and reduced body condition (McClure et al., 2013, 2017; Ware et al., 2015). Growing evidence indicates that anthropogenic noise diminishes the quality of visitor experiences in natural areas, partly by masking natural sounds (Dumyahn and Pijanowski 2011; Stack et al., 2011; Rapoza et al., 2015). Conversely, reducing traffic noise levels could potentially improve visitor experiences by reducing the masking of natural sounds (Levenhagen et al., 2020).

Growing outdoor recreational activities in natural settings worsen stress on ecosystems and individual species (Pickering and Hill, 2007; Steven et al., 2011). Conversely, the naturalness, biodiversity, or presence of certain emblematic species can enhance the attractiveness of an area for recreational activities (Knight, 2009; Hammitt et al., 2015; Aasetre et al., 2016). However, recreational activities may conflict with another important function of natural spaces: the preservation of habitats and biodiversity (Green and Giese, 2004; Niemela et al., 2005; Probstl et al., 2010). Recreation is increasingly recognized as a threat to a wide range of species (Ballantyne and Pickering, 2013; BirdLife International, 2015), necessitating careful study of its impact on natural areas and species of conservation concern. The impacts of recreational activities on nature are manifold: trampling affects vascular plants and alters soil conditions, leading to direct destruction of vegetation cover (Cole, 2004; Pickering et al., 2011). Human-induced spread of invasive weeds or pathogens further complicates the issue (Kelly et al., 2003). While some wildlife species adapt to human recreation, there is a growing body of evidence highlighting its negative impacts on wildlife (Steven et al., 2011; Larson et al., 2016). Recreational activities can even undermine the effectiveness of protected areas (Reed and Merenlender, 2008).

The impact of agriculture on forest bird diversity varies; it may have negative effects on species requiring extensive forest cover, while benefiting generalist birds. Recreation activities often result in habitat loss for ground-cover dependent birds such as Blue Tits and Robins (Steven et al., 2011). In urban settings like Isfahan, park size positively bird influences diversity, whereas overcrowding has a negative effect; circular park shapes are preferred to minimize edge effects on bird populations (Hemami and Zairi, 2011). Sagheb Talebi et al. (2001) observed that in open and degraded forest areas, the canopy opening and subsequent exploitation lead to rapid invasion and growth of herbaceous species such as ferns and raspberry varieties. This invasion is cited as a factor contributing to a slight increase in these areas. The colonization of the forest floor by such species reduces opportunities for other plants, ultimately lowering biodiversity and the density of many bird species, especially umbrella species like woodpeckers. Whitecotton et al. (2000) demonstrated that recreational activities decrease litter depth. In heavily used areas, the average litter depth was 91% lower compared to unused areas. Steven et al. (2011) examined the impact of recreation on bird communities and noted that forest clearance for recreational purposes reduces survival rates for species dependent on bush and shrub cover, such as the bluethroated warbler and red-breasted warbler.

Conclusion

Urbanization and urban development, recreation and agriculture are some of the main factors impacting the abundance and

biodiversity of forest birds living near urban areas. Urbanization has negative effects on the relative abundance and species diversity of all forest birds, as well as the relative abundance of generalist forest birds. These outcomes are attributed to the cumulative effects of various disturbances associated with urbanization, which increase bird mortality and decrease reproductive success. Urbanization has far-reaching including increased construction, roads, air pollution, and higher temperatures, which encroach on habitats and introduce non-native plants. These changes amplify densities of brood parasites and noise levels, while reducing caterpillar abundance. adversely affects breeding density, hatching success, chick survival, nest productivity, and chick weight, and also increases nest predation rates.

In addition to urbanization, activities such as hiking, road construction, and logging in Alangdareh Recreational Forest negatively impact bird populations, leading sensitive species to vacate the area. In contrast, Shastkalateh Protected Forest maintains high bird diversity due to its stable ecosystem, which supports species like European Robins and Winter Wrens with suitable nesting sites and food sources. Conservation strategies should prioritize the preservation of standing dead trees and microhabitats crucial for species such as woodpeckers and Eurasian Nuthatches. Balancing recreational access with wildlife protection can be achieved through thoughtful trail design and adherence to visitor management guidelines.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

Angelstam, P., and Donz-Breuss, M. 2004. Measuring Forest Biodiversity at the Stand Scale-An Evaluation of Indicators in European Forest History Gradients. Ecological Bulletins. 51, 305–332.

Aasetre, J., Gundersen, V., Vistad, O.I., and Holtrop, E.J. 2016. Recreational preferences along a naturalness-development continuum: Results from surveys in two unequal urban forests in Europe. Journal of Outdoor Recreation and Tourism. 16, 58-68.

- Atkinson, P.I. 2003. Edge effects and birds across karri forest (Eucalyptus diversicolor) clear-fell edges: a study of theory and conservation management (Doctoral dissertation, Murdoch University).475.
- Ballantyne, M., and Pickering, C.M. 2015. Recreational trails as a source of negative impacts on the persistence of keystone species and facilitation. Journal of Environmental Management 159, 48–57.
- Ballantyne, M., and Pickering, C.M. 2013. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodiversity and Conservation. 22, 3027-3044.
- Balmford, A., Beresford, J., Green, J., Naidoo, R., Walpole, M., and Manica, A. 2009. A global perspective on trends in nature-based tourism. PLoS biology. 7(6), p.e1000144.
- Balmford, A., Green, J.M.H., Anderson, M., Beresford, J., Huang, C., Naidoo, R., and Manica, A. 2015. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biology, 13, e1002074.
- Barros, A., Monz, C., and Pickering, C.M. 2015. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. Ambio 44(2), 82–98.
- Barzehkar, G.H. 2003. Alangdareh Forest Park revision plan, Ministry of Agriculture, Organization of forests and Pastures and Watershed management. 192 p.
- Baudains, T. P., and Lloyd, P. 2007. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Animal Conservation. 10, 400–407
- Bednekoff, P.A., and Houston, A.I. 1994. Avian daily foraging patterns: effects of digestive constraints and variability. Evolutionary Ecology. 8(1), 36-52.
- Bejder, L., Samuels, A., Whitehead, H., Finn, H., and Allen, S. 2009. Impact assessment research: Use and misuse of habituation, sensitization and tolerance in describing wildlife responses to anthropogenic stimuli. Marine Ecology Progress Series. 395,177–185.
- BirdLife International. 2015. European red list of birds. Luxembourg: Office for official publications of the European communities. 67.
- Boonman, M. 2000. Roost selection by noctules (Nyctalus noctula) and Daubenton's bats (Myotis daubentonii). Journal of Zoology. 251(3), 385-389.
- Botsch, Y., Tablado, Z., and Jenni, L. 2017. Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proceedings of the Royal Society B: Biological Sciences. 284(1858), 20170846.
- Bovo, A.A., Ferraz, K.M., Magioli, M., Alexandrino, E.R., Hasui, E., Ribeiro, M.C., and Tobias, J.A. 2018. Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in tropical forest. Perspectives in ecology and conservation. 16(2), 90-96.
- Brand, L.A., and T.L. George. 2001. Response of passerine birds to forest edge in coast redwood forest fragments. The Auk. 118(3), 678-686.
- Buchecker, M., and Degenhardt, B. 2015. The effects of urban inhabitants' nearby outdoor recreation on their well-being and their psychological resilience. Journal of Outdoor Recreation and Tourism. 10, 55-62.
- Buckley, R. 2002. Managing tourism in parks: research priorities of industry associations and protected area agencies in Australia. Journal of Ecotourism. 1, 162-172.
- Buxton, R.T., McKenna, M. F., Mennitt, D., Fristrup, K., Crooks, K., Angeloni, L., and Wittemyer, G. 2017. Noise pollution is pervasive in US protected areas. Science 356: 531–533.
- Canadian Forest Service. 1995. Criteria and indicators for the conservation and sustainable management of temperate and boreal forests: the Montreal Process. Canadian Forest Service. Natural Resources Canada.
- Carvalho, Cd.S, Garcia, C., Lucas, M. S., Jordano, P., and Cortes, MC. 2020. Extant fruit-eating birds promote genetically diverse seed rain, but disperse to fewer sites in defaunated tropical forests. Journal of Ecology 109(2), 1055-1067.

- Castelletta, M., Thiollay, J. M., and Sodhi, N.S. 2005. The effects of extreme forest fragmentation on the bird community of Singapor Island. Biological conservation. 121, 135-155.
- Chaves, O.M., Stoner, K.E. and Arroyo-Rodríguez, V. 2011. Seasonal differences in activity patterns of Geoffroyí's spider monkeys (Ateles geoffroyi) living in continuous and fragmented forests in southern Mexico. International Journal of Primatology. 32(4), 960-973.
- Chiesura, A. 2004. The role of urban parks for the sustainable city. Landscape and Urban Planning. 68(1), 129–138.
- Cole, D.N. 2004. Impacts of hiking and camping on soils and vegetation: a review. In: Buckley, R. (Ed) Environmental Impacts of Ecotourism. CABI Publishing. Wallingford.
- Cole, D.N., and Monz, C.A. 2002. Trampling disturbance of subalpine vegetation, Wind River Mountains, Wyoming. Arctic. Antarctic and Alpine Research 34, 365–376.
- Connolly, D.A., Henkin, J. A., and Tyzbir, R.S. 2002. Changes in selected fitness parameters following six weeks of snowshoe training. Journal of Sports Medicine and Physical Fitness. 42, 14-18.
- Cooper, C., Larson, L., Dayer, A., Stedman, R., and Decker, D. 2015. Are wildlife recreationists conservationists? Linking hunting, birdwatching, and pro-environmental behavior. The Journal of Wildlife Management. 79, 446–457.
- Coote, L., Dietzsch, A.C., Wilson, M.W., Graham, C.T., Fuller, L., Walsh, A.T., Irwin, S., Kelly, D.L., Mitchell, F.J., Kelly, T.C. and O'Halloran, J., 2013. Testing indicators of biodiversity for plantation forests. Ecological indicators, 32, pp.107-115.
- Cordell, H. K, Betz, C. J., and Green, GT. 2008. Nature-based outdoor recreation trends and wilderness. Int J Wilderness. 14(2):7–10.
- De Groot, R.S., Alkemade, R., Braat, L., Hein, L., and Willemen, L. 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity. 7, 260-272.
- Dumyahn, S.L. and Pijanowski, B.C., 2011. Soundscape conservation. Landscape ecology. 26(9), 1327-1344.
- Fahrig, L. 2007. Non-optimal animal movement in human-altered landscapes. Functional ecology. 21(6), 1003-1015.
- Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology. Evolution, and systematics. 34(1), 487-515.
- Ferris, R., Peace, A.J., and Newton, A.C. 2000. Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten) plantations in England: relationships with site factors and stand structure. Forest Ecology and Management. 131(1-3), 255-267.
- Fischer, J., and Lindenmayer, D.B. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography. 16(3), 265-280.
- Forman, R.T.T., Sperling, D., Bissonette, J. A., Clevenger, A. P., Cutshall, C. D., Dale, V. H.,
 Fahrig, L., France, R., Goldman, C. R., Heanue, K., Jones, J. A., Swanson, F. J., Turrentine,
 T., and Winter, T. C. 2003. Road Ecology; Science and Solutions. Island Press, Covelo, CA.
 Franklin, J.F., 1989. Towards a New Forestry. 95, 37–44.
- Frid, A., and Dill, L. 2002. Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology. 6(1), 1–17.
- Frid, A., and Dill, L. 2002. Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology. 6, 11.
- Galetti, M., Guevara, R., Cortes, M.C., Fadini, R., Von Matter, S., Leite, A.B., Labecca, F., Ribeiro, T., Carvalho, C.S., Collevatti, R.G., Pires, M.M., Guimaraes Jr., P.R., Brancalion, P.H., Ribeiro, M.C., and Jordano, P. 2013. Functional extinction ofbirdsdrives rapid evolutionary changes in seed size. Science. 340, 1086–1090.
- Gao, T., Nielsen, A.B., and Hedblom, M. 2015. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecological Indicators. 57, 420-434.

- Gaston, K.J., Blackburn, T.M., and Goldewijk, K.K. 2003. Habitat conversion and global avian biodiversity loss. Proceedings of the Royal Society of London. Series B: Biological Sciences. 270(1521), 1293-1300.
- Geffory, B., Samia, D. S., Bessa, E., and Blumstein, D. T. 2015. How nature-based tourism might increase prey vulnerability to predators. Trends in Ecology and Evolution. 30, 755–765.
- Godbey, G. 2009. Outdoor recreation, health, and wellness Understanding and enhancing the relationship. Report RFF DP 09-21. Prepared for the Outdoor Resources Review Group. Resources for the Future Back Ground Study. 42.
- Green, R., and Giese, M. 2004. Negative effects of wildlife tourism on wildlife. In: Wildlife tourism: impacts, management and planning. Higginbottom, K. (Eds). Sustainable Tourism Pty Ltd.
- Gregory, R.D., and Van Strien, A. 2010. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithological Science. 9(1), 3-22.
- Gutzwiller, K.J., D'Antonio, A.L., and Monz, C.A. 2017. Wildland recreation disturbance: broadscale spatial analysis and management. Frontiers in Ecology and the Environment. 15, 517– 524.
- Haddaway, N.R. 2015. A call for better reporting of conservation research data for use in meta-analyses. Conservation Biology.29, 1242–1245.
- Hammitt, W.E., Cole, D.N., and Monz, C.A. 2015. Wildland recreation: ecology and management. John Wiley and Sons. 328
- Hardwick, S.R., Toumi, R., Pfeifer, M., Turner, E.C., Nilus, R. and Ewers, R.M. 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology. 201, 187-195.
- Hemami, M., and Zaeri Amirani, A. 2011. Investigating the effect of the size and shape of urban parks on species richness of birds (case study: Isfahan parks). Environmental Journal. 37 (59), 55-62.
- Hindayani, B., and Mardikaningsih, R. 2022. Urban Forest: The Role of Improving the Quality of the Urban Environment, Bulletin of Science, Technology and Society. 1(1), 25-29.
- Imbeau, L. and Desrochers, A. 2002. Foraging ecology and use of drumming trees by three-toed woodpeckers. The Journal of Wildlife Management. 222-231.
- Kaczynski, A.T., and Henderson, K. A. 2007. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leisure Sciences. 29(4), 315–354.
- Kangas, K., Luoto, M., Ihantola, A., Tomppo, E., and Siikamaki, P. 2010. Recreation-induced changes in boreal bird communities in protected areas. Ecological Applications. 20, 1775–1786.
- Kelly, C.L., Pickering, C.M., and Buckley, R.C. 2003. Impacts of tourism on threatened plant taxa and communities in Australia. Ecological Management and Restoration. 4, 37-44.
- Khera, N., Mehta, V., and B.C. Sabata. 2009. Interrelationship of birds and habitat features in urban green spaces in Delhi, India. Urban Forestry & Urban Greening. 8,187-196.
- Knight, J. 2009. Making wildlife viewable: habituation and attraction. Society and Animals. 17, 167-184.
- Kortmann, M., Hurst, J., Brinkmann, R., Heurich, M., Silveyra Gonzalez, R., Müller, J., and Thorn, S. 2018. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Animal Conservation. 21(1), 21-30.
- Kostanjsek, F., Sebek, P., Baranova, B., Seric Jelaska, L., Riedl, V., and Cizek, L. 2018. Size matters! Habitat preferences of the wrinkled bark beetle, Rhysodes sulcatus, the relict species of European primeval forests. Insect Conservation and Diversity. 11(6), 545-553.
- Kuznetsova, V.V. 2021. Study of the avifauna of urbanized territories of towns in Russia world science: problems and innovations. In World Science: Problems and Innovations. 30 (05), 31-33.
- Larrieu, L., Cabanettes, A., Gonin, P., Lachat, T., Paillet, Y., Winter, S., Bouget, C., and Deconchat, M. 2014. Deadwood and tree microhabitat dynamics in unharvested temperate

- mountain mixed forests: A life-cycle approach to biodiversity monitoring. Forest Ecology and Management. 334, 163-173.
- Larrieu, L., Paillet, Y., Winter, S., Bütler, R., Kraus, D., Krumm, F., Lachat, T., Michel, A.K., Regnery, B., and Vandekerkhove, K. 2018. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecological Indicators. 84, 194-207.
- Larson, C.L., Reed, S.E., Merenlender, A.M., and Crooks, K.R. 2016. Effects of recreation on animals revealed as widespread through a global systematic review. PloS one. 11(12), 0167259.
- Larson, CL., Reed, S.E., Merenlender, A. M., and Crooks, K.R. 2019. A meta-analysis of recreation effects on vertebrate species richness and abundance. Conservation Science and Practice. 1(10), 1–9.
- Lassauce, A., Paillet, Y., Jactel, H., and Bouget, C. 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators. 11(5), 1027-1039.
- Lebedinskii, A., Noskova, O., and Dmitriev, A. 2019. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia). Nature Conservation Research. 4.
- Legendre, P., and Legendre, L. 1998. Numerical Ecology. Elsevier Press, Amsterdam. 853.
- Lehmann, M., Spoelstra, K., Visser, M.E. and Helm, B. 2012. Effects of temperature on circadian clock and chronotype: an experimental study on a passerine bird. Chronobiology International. 29(8), 1062-1071.
- Lesmerises, F., Dery, F., Johnson, C.J., and St-Laurent, M.H. 2018. Spatiotemporal response of mountain caribou to the intensity of backcountry skiing. Biological Conservation. 217, 149–156.
- Levenhagen, M.J., Miller, Z.D., Petrelli, A. R., Ferguson, L. A., Shr, Y., Gomes, D. G., Taff, B. D., White, C., Fristrup, K., and Monz, C. 2020. Ecosystem services enhanced through soundscape management link people and wildlife. People and Nature. 00,1–14.
- Lindenmayer, D.B., and Ough, K. 2006. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conservation Biology. 20(4), 1005-1015.
- Lindenmayer, D.B., Margules, C.R., and Botkin, D.B. 2000. Indicators of biodiversity for ecologically sustainable forest management. Conservation biology. 14(4), 941-950.
- Lohr, S.M., Gauthreaux, S.A., and Kigo, J.C. 2002. Importance of coarse woody debris to avian communities in loblolly pine forest. Conservation Biology. 16, 767-777.
- MacArthur, R.H. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press.
- MacArthur, R.H., and MacArthur, J.W. 1961. On bird species diversity. Ecology. 42 (3): 594–598.
- Macleod, R., Barnett, P., Clark, J.A., and Cresswell, W. 2005. Body mass change strategies in blackbirds Turdus merula: the starvation–predation risk trade-off. Journal of Animal Ecology. 74(2), 292-302.
- Maggini, R., Lehmann, A., Zbinden, N., Zimmermann, N.E., Bolliger, J., Schroder, B., Foppen, R., Schmid, H., Beniston, M., and Jenni, L. 2014. Assessing speciesvulnerability to climate and land use change: the case of the Swiss breedingbirds. Diversity and Distributions. 20, 708–719.
- Maller, J., Pollath, J., Moshammer, R., and Schroder, B. 2009. Predicting the occurrence of Middle Spotted Woodpecker Dendrocopos medius on a regional scale, using forest inventory data. Forest Ecology and Management. 275, 502-50.
- Mason, J.T., McClure, C.J., and Barber, J.R. 2016. Anthropogenic noise impairs owl hunting behavior. Biological Conservation. 199, 29-32.
- Martikainen, P., Kaila, L., and Haila, Y. 1998. Threatened beetles in White-backed Woodpecker habitats. Conservation biology. 12(2), 293-301.

- McCabe, J.D., and Olsen, B.J. 2015. Tradeoffs between predation risk and fruit resources shape habitat use of landbirds during autumn migration. The Auk: Ornithological Advances. 132(4), 903-913.
- McClure, C.J., Ware, H.E., Carlisle, J.D., and Barber, J.R. 2017. Noise from a phantom road experiment alters the age structure of a community of migrating birds. Animal conservation. 20(2), 164-172.
- McClure, C.J., Ware, H.E., Carlisle, J., Kaltenecker, G., and Barber, J.R. 2013. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proceedings of the Royal Society B: Biological Sciences. 280(1773), 20132290.
- McElhinny, C., Gibbons, P., Brack, C., and Bauhus, J. 2006. Fauna-habitat relationships: a basis for identifying key stand structural attributes in temperate Australian eucalypt forests and woodlands. Pacific Conservation Biology. 12(2), 89 110
- McNamara, J.M., Houston, A.I., and Lima, S.L. 1994. Foraging routines of small birds in winter: a theoretical investigation. Journal of Avian Biology. 22, 287-302.
- MEA-Millennium Ecosystem Assessment. 2005. Available online: https://millenniumassessment.org/en/. Framework.html (accessed on 1 May 2019).
- Michel, A.K., and Winter, S. 2009. Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, USA. Forest Ecology and Management. 257(6), 1453-1464.
- Mikusinski, G., Villero, D., Herrando, S., and Brotons, L. 2018. Macroecological patterns in forest bird diversity in Europe. In: Mikusinski, G., Roberge, J. M., Fuller, R.J. (Eds.), Ecology and Conservation of Forest Birds. Cambridge University Press, Cambridge, UK. 137–182.
- Moaiery, M. H., and A. A. Mohammad Alipour Malekshah. 2006. Book Review of the Second Series of a Forestry Plan by Dr. Bahramnia. College of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources.
- Monz, C.A., Pickering, C.M., and Hadwen, W. 2013. Recent advances in recreation ecology and the implications of different relationships between recreation use and ecological impacts. Frontiers in Ecology and the Environment. 11,441–446.
- Niemela, J., Young, J., Alard, D., Askasibar, M., Henle, K., Johnson, R., and Watt, A. 2005. Identifying, managing and monitoring conflicts between forest biodiversity conservation and other human interests in Europe. Forest Policy and Economics. 7, 877-890.
- Nor Hashim, E., and Ramli, R. 2013. Comparative study of understorey bird's diversity inhabiting lowland rainforest virgin jungle reserve and regenerated forest. The Scientific World Journal. 2013(1), 676507.
- Oliveira Bezerra, D.D., de Lucena, L.R.R., Duffield, G.E., Acri, D.J., and Pontes, A.R.M. 2020. Activity pattern, budget and diurnal rhythmicity of the brown-throated three-toed sloth (Bradypus variegatus) in northeastern Brazil. Mammalian Biology. 100(4), 337-353.
- Paillet, Y., Archaux, F., Boulanger, V., Debaive, N., Fuhr, M., Gilg, O., Gosselin, F., and Guilbert, E. 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves. Forest Ecology and Management. 389, 176-186.
- Paracchini, M. L., Zulian, G., Kopperoinen, L., Maes, J., Schägner, J. P., Termansen, M., and Bidoglio, G. 2014. Mapping cultural ecosystem services: A framework to assess the potential for outdoor recreation across the EU. Ecological Indicators. 45, 371-385.
- Peh, K.S.H., De Jong, J., Sodhi, N.S., Lim, S.L.H., and Yap, C.A.M. 2005. Lowland rainforest avifauna and human disturbance: persistence of primary forest birds in selectively logged forests and mixed-rural habitats of southern Peninsular Malaysia. Biological Conservation. 123(4), 489-505.
- Pickering, C. M., and Hill, W. 2007. Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia. Journal of Environmental Management. 85, 791–800.
- Pickering, C. M., Rossi, S., and Barros, A. 2011. Assessing the impacts of mountain biking and hiking on subalpine grassland in Australia using an experimental protocol. Journal of Environmental Management. 92, 3049-3057.

- Pickering, C.M., and Barros, A. 2015. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. Journal of Environmental Management. 164,129–136.
- Poulsen, B.O. 2002. Avian richness and abundance in temperate Danish forests: tree variables important to birds and their conservation. Biodiversity and Conservation. 11(9), 1551-1566.
- Probstl, U., Wirth, V., Elands, B., and Bell, S. 2010. Management of recreation and nature based tourism in European forests. Springer Berlin, Germany. Proceedings of the Royal Society B. 284, 20170846.
- Proença, V.M., Pereira, H.M., Guilherme, J., and Vicente, L. 2010. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica. 36(2), 219-226.
- Qiu, G.Y., Zou, Z., Li, X., Li, H., Guo, Q., Yan, C., and Tan, S. 2017. Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China. Habitat international. 68, 30-42.
- Ramos, D. L., Pizo, M. A., Ribeiro, M. C., Cruz, R. S., Morales, J. M., and Ovaskainen, O. 2020. Forest and connectivity loss drive changes in movement behavior of bird species. Ecography. 43, 1203–1214.
- Ranius, T., and Hedin, J. 2001. The dispersal rate of a beetle, *Osmoderma eremita*, living in tree hollows. Oecologia. 126, 363–70.
- Rapoza, A., Sudderth, E., and Lewis, K. 2015. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks. The Journal of the Acoustical Society of America. 138(4), 2090-2105.
- Reed, S. E., and Merenlender, A. M. 2008. Quiet, nonconsumptive recreation reduces protected area effectiveness. Conservation Letters. 1, 146–154.
- Reich, R.M., J. Lundquist, and V. A. Bravo. 1999. Spatial relationship of resident and migratory birds and canopy openings in diseased ponderosa pine forests, *Environmental Modeling* and Software. 15, 189-197.
- Reijnen, R., Foppen, R., and Meeuwsen, H. 1996. The effects of traffic on the density of breeding birds in Dutch agricultural grasslands. Biological conservation. 75(3), 255-260.
- Reino, L., Triviño, M., Beja, P., Araújo, M.B., Figueira, R., and Segurado, P. 2018. Modelling landscape constraints on farmland bird species range shifts under climate change. Science of the Total Environment. 625, 1596-1605.
- Rey Benayas, J., Meltzer, J., de las Heras-Bravo, D., and Cayuela, L. 2017. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLOS One.12 (9).
- Reyes-Arriagada, R., Jiménez, J.E., and Rozzi, R. 2015. Daily patterns of activity of passerine birds in a Magellanic sub-Antarctic forest at Omora Park (55 S), Cape Horn Biosphere Reserve, Chile. Polar Biology. 38(3), 401-411.
- Roth, R. R. 1976. Spatial heterogeneity and bird species diversity. Ecology. 57 (4), 773–782.
- Ruczyński, I., and Bogdanowicz, W. 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, eastern Poland. Journal of Mammalogy. 86(5), 921-930.
- Sagheb Talebi, Kh, Ghorchi Beigi, A.A., Shahnavazi, H., and Mousavi Mirkalai, R. 2001. The structure of the Caspian forests and the possibility of applying the single selection method in them, the Second International Conference on Forestry and Industry. 1, 107-138.
- Schulze, K., Knights, K., Coad, L., Geldmann, J., Leverington, F., Eassom, A., Marr, M., Butchart, S.H.M, Hockings, M., and Burgess, N.D. 2018. An assessment of threats to terrestrial protected areas. Conservation Letters. 11(3), 1–10.
- Silva, C.C., Lourenço, R., Godinho, S., Gomes, E., Sabino-Marques, H., Medinas, D., Neves, V., Silva, C., Rabaça, J.E., and Mira, A. 2012. Major roads have a negative impact on the Tawny Owl Strix aluco and the Little Owl Athene noctua populations. Acta Ornithologica. 47(1), 47-54.

- Simonov S., and Matantseva, M. 2020. Analysis of the current status of avifauna in Kostomuksha State Nature Reserve and Kalevala National Park (North-West Russia), taking into account influence from adjacent areas. Nature Conservation Research. 5(3).
- Simonsson, P., Gustafsson, L., and Ostlund, L. 2015. Retention forestry in Sweden: driving forces, debate and implementation 1968–2003. Scandinavian Journal of Forest Research. 30(2), 154-173.
- Sodhi, N.S., Liow, L.H., and Bazzaz, F.A. 2004. Avian extinctions from tropical and subtropical forests. Annual Review of Ecology, Evolution, and Systematics. 35, 323–345.
- Song, Y., Huang, B., Cai, J., and Chen, B. 2018. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Science of the Total Environment. 634, pp.1315-1325.
- Speakman, J.R. 2008. The physiological costs of reproduction in small mammals. Philosophical Transactions of the Royal Society B: Biological Sciences. 363(1490), 375-398.
- Stack, D.W., Peter, N., Manning, R.E., and Fristrup, K.M. 2011. Reducing visitor noise levels at Muir Woods National Monument using experimental management. The Journal of the Acoustical Society of America. 129(3), 1375-1380.
- Stagol, K., Manning, A. D., Knight, E., Fischer, G., and Lindenmayer, D. B. 2010. Using bird habitat relationships to inform urban planning. Landscape and Urban Planning. 98, 13-25.
- Steven, R., Pickering, C. M., and Castley, J.G. 2011. A review of the impacts of nature based recreation on birds. Journal of Environmental Management. 92, 2287–2294.
- S Stein, A., Gerstner, K., and Kreft, H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology letters. 17(7), 866-880.
- Sugiyama, T., Leslie, E., Giles-Corti, B. and Owen, N., 2008. Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? Journal of Epidemiology and Community Health. 62(5), e9-e9.
- Tews, J., Brose, U., Grimm, V., Tielborger, K., Wichmann, M.C., Schwager, M., and Jeltsch, F., 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of biogeography. 31(1), 79-92.
- Thompson, M., and Henderson, R. 1998. Elk habituation as a credibility challenge for wildlife professionals. Wildlife Society Bulletin. 26, 477-483.
- Monterrubio-Rico, T.C., and Escalante-Pliego, P. 2006. Richness, distribution and conservation status of cavity nesting birds in Mexico. Biological Conservation. 128(1), 67-78.
- Tillon, L., Bouget, C., Paillet, Y., and Aulagnier, S. 2016. How does deadwood structure temperate forest bat assemblages? European Journal of Forest Research. 135(3), 433-449.
- Varasteh Moradi, H. 2011. Evaluation of the effects of the Tehran- Mashhad Asian Highway on the Society of Birds in Golestan National Park. Environmental Research. 2 (3), 21-34.
- Varaste Moradi, H., Khoshzaher, H., and Burchi, M. 2013. The effect of the rim on bird community density and diversity in Golestan National Park. Quarterly Scientific Journal of Animal Ecology.
- Wallace, A. R. 1869. The Malay Archipelago. London: Macmillan.
- Ware, H.E., McClure, C.J., Carlisle, J.D., and Barber, J.R. 2015. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proceedings of the National Academy of Sciences. 112(39), 12105-12109.
- Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R., Huntley, B., Roy, D.B., Telfer, M.G., Jeffcoate, S., Harding, P., and Jeffcoate, G. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature. 414(6859), 65-69.
- Watson, J. E.M., Whittaker, R.J., and Dawson, T.P. 2004. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent bird in tropical forests of southeastern Madagascar. Biological Conservation. 120, 311-327.
- Weslien, J., Djupström, L.B., Schroeder, M., and Widenfalk, O. 2011. Long-term priority effects among insects and fungi colonizing decaying wood. Journal of Animal Ecology. 80(6), 1155-1162.

- Whitecotton, R., David, M., Darmody, R., and Price, D. 2000. Impact of foot traffic from military training on soil and vegetation properties. Environmental Management. 26(6), 697–706.
- Winter, S., and Moller, G.C. 2008. Microhabitats in lowland beech forests as monitoring tool for nature conservation. Forest Ecology and Management. 255(3-4), 1251-1261.
- Worboys, G. L., M. Lockwood, and Delacy, T. 2001. Protected area management: Principles and practica. Oxford University Press. South Melbourne. 1-399.
- Wraith, J., and Pickering, C.M. 2017. Tourism and recreation a global threat to orchids. Biodiversity and Conservation. 26, 3407–3420.
- Zakaria, M., and Rajpar, M. 2013. Density and diversity of water birds and terrestrial birds in man-made Marsh, Malaysia (Ketumpatan dan Kepelbagaian Burung Air dan Burung Daratan di Rawa Buatan Manusia, Malaysia). Sains Malaysiana. 42(10), 1483-1492.
- Zakaria, M., Rajpar, M.N., Moradi, H.V., and Rosli, Z. 2014. Comparison of understorey bird species in relation to edge—interior gradient in an isolated tropical rainforest of Malaysia. Environment Development and Sustainability. 16(2), 375-392.
- Zhou, W., Wang, J., Qian, Y., Pickett, S.T., Li, W., and Han, L. 2018. The rapid but "invisible" changes in urban greenspace: A comparative study of nine Chinese cities. Science of the Total Environment. 627, 1572-1584.