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Abstract

Remote sensing-based indices are effective tools for monitoring
drought and wet conditions. In this study, the Normalized Difference
Drought Index (NDDI), derived from NDVI (Normalized Difference
Vegetation Index) and NDWI (Normalized Difference Water Index)
data obtained from Sentinel-2 satellite imagery, was employed to
assess drought conditions. Time series of these indices were generated
using coding in the Google Earth Engine (GEE) platform, and the
NDDI was subsequently calculated in Excel. Additionally, future
predictions of the NDDI were conducted using time series modeling
techniques. The results indicate that the NDDI is a reliable indicator
for representing droughts caused by water scarcity and reduced
vegetation cover. Analysis of NDDI values from 2016 to 2023 in the
Khorramabad watershed revealed a range between -3.20 and -11.21,
suggesting that the region generally experienced very low drought
intensity during this period. Furthermore, drought prediction results
based on NDDI, using time series modeling, identified the MA2
model as the most accurate, with a high coefficient of determination
(R?=0.92) and an Akaike Information Criterion (AIC) value of less
than 50. The findings indicate that the decline in NDDI during the
spring (-5.3) and winter (-5.4) of 2024 reflects improvements in
relative vegetation cover, precipitation levels, and water reserves.
However, an increase in this index during the summer and autumn
(approximately -3) of 2024 suggests worsening drought conditions
and reduced rainfall. This trend is projected to persist across different
seasons in 2025 and 2026. In conclusion, the NDDI is recommended
as a valuable tool for analyzing vegetation cover status and water
fluctuations, enabling optimal watershed management strategies.
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Introduction

Drought is one of the most complex and
destructive natural phenomena, profoundly
affecting all living organisms. It is defined as
a deficiency in water resources compared to
normal conditions, with far-reaching impacts
on the environment, economy, and human
societies. Drought is particularly detrimental
to the agricultural sector, as reduced water
availability leads to decreased crop
production and threatens food security. This
phenomenon also triggers significant social
and economic consequences, including forced
migration, increased water management
costs, and social tensions (Mishra et al., 2022;
Zeng et al., 2022; West et al., 2019; Lesk et
al., 2016). In recent decades, numerous
methods have been developed to study and
assess drought, utilizing factors such as
precipitation, soil moisture, temperature,
vegetation indices, and other climatic
variables. These methods aim to enhance the
monitoring of drought conditions and
evaluate their intensity and spatial extent.
Commonly wused indices include the
Standardized Precipitation Index (SPI), soil
moisture index, Normalized Difference
Vegetation Index (NDVI), Vegetation
Condition Index (VCD, and
evapotranspiration index. These indices
provide comprehensive insights into climatic
conditions and the impacts of drought on
natural resources, agriculture, and
ecosystems, thereby supporting decision-
making processes and mitigating the adverse
effects of drought (Dalezios et al., 2019).
Advancements in remote sensing technology
have further enabled researchers to utilize
various types of remote sensing data,
including multispectral, thermal infrared, and
microwave data, for large-scale drought
monitoring. Remote sensing offers a
comprehensive view of the Earth and a spatial
framework for assessing drought impacts. It
serves as a valuable source of continuous
spatial and temporal data, facilitating the
monitoring of vegetation dynamics across
extensive regions (Hao et al., 2015).

One of the recent remote-sensing-based
indices is the Normalized Difference Drought

Index (NDDI). This index evaluates drought
conditions by integrating data on soil
moisture content and vegetation health,
providing a comprehensive measure of an
area’s dryness or wetness. The NDDI is
considered a superior tool for drought
monitoring due to the following advantages:

Dual  Monitoring  Capability: By
simultaneously assessing soil moisture and
vegetation health, the NDDI captures two
critical factors that influence drought
severity, offering a more holistic evaluation.
Precipitation Sensitivity: The NDDI reflects
the effects of precipitation more accurately
than indices that focus exclusively on
vegetation or soil metrics, making it more
responsive to changes in water availability.

Reduced Environmental Noise: Unlike
traditional indices such as the Normalized
Difference Vegetation Index (NDVI) or the
Normalized Difference Water Index (NDWI),
the NDDI minimizes interference from
atmospheric  variations and  seasonal
vegetation changes, enhancing its reliability.

Satellite-Derived Simplicity: The NDDI
relies entirely on satellite data, eliminating the
need for supplementary ground-based
meteorological measurements and
simplifying its application across large and
remote areas.

These advantages make the NDDI an
excellent tool for accurately monitoring
drought conditions and their impacts (Du et
al., 2018; Xie et al., 2021). Trinh et al. (2019)
examined the application of remote sensing
techniques for drought assessment using the
Normalized Difference Drought Index
(NDDI) in Binh Thuan Province, Vietnam.
They concluded that the results could be used
to create drought-level maps and provide
valuable information to help managers
implement measures to minimize drought-
related damage. Similarly, Rismayatika et al.
(2020) applied the NDDI to identify dry areas
on agricultural land in Magetan Regency,
Indonesia, demonstrating its ability to detect
drought with acceptable accuracy. Artikanur
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et al. (2022) utilized the NDDI to map
drought intensity in the Bojonegoro region of
Indonesia, identifying it as a suitable index
for drought estimation and prediction. Salas-
Martinez et al. (2023) estimated the NDDI
using Landsat 8 multispectral images in the
central zone of the Gulf of Mexico. They
concluded that the NDDI effectively
characterizes drought behavior during periods
of reduced precipitation and increased
temperatures. Patil et al. (2024) introduced
the NDDI in a remote sensing-based study,
combining NDVI and NDWTI indices, and
described it as an independent index that
complements conventional drought
estimation techniques. Affandy et al. (2024)
employed the NDDI to assess agricultural
drought in the Corong River basin,
confirming its effectiveness in drought
monitoring. Li et al. (2024) developed a novel
composite  drought index integrating
precipitation, temperature, and
evapotranspiration for drought monitoring in
the Huang-Huai-Hai Plain. They used time-
series analysis methods to analyze drought
evolution, highlighting the index's utility in
understanding drought patterns. Alshahrani et
al. (2024) applied a Support Vector Machine-
based Drought Index (SVM-DI) for regional
drought analysis in northern Pakistan. They
concluded that the SVM-DI methodology
provides a unique approach to reducing the
impact of extreme values and outliers when
aggregating regional precipitation data.

This study leverages modern remote sensing
methods and time-series analysis of the NDDI
to enhance the understanding of drought
patterns in the Khorramabad region, offering
a robust tool for drought prediction and
management. Conducting this research is
essential, as its findings can contribute to
scientific and executive decision-making in

drought crisis management. The innovation
of this research lies in its application of the
NDDI for the first time in Iran, specifically
within the Khorramabad watershed, to obtain
and analyze drought conditions.

Materials and Methods

Study Area

The study area is the Khorramabad
Watershed, located in Lorestan Province,
Iran, and is a sub-basin of the Karkheh River
basin. Covering an area of 161913 hectares, it
includes the sub-basins adjacent to the city of
Khorramabad and the Cham-Anjir River.
Geographically, the watershed is situated
between longitudes 48°03'36" to 48°46'12" E
and latitudes 33°15'36" to 33°43'44" N,
encompassing the Kamalvand and Central
Khorramabad plains. The region is connected
to neighboring counties via major roads,
including  the  Borujerd-Khorramabad,
Poldokhtar-Khorramabad, and  Dorud-
Khorramabad highways (Figure 1). The
average annual precipitation and temperature
recorded at the Khorramabad meteorological
station are 46644 mm and 16.98°C,
respectively, with an average annual
evaporation of 209 mm. The basin is located
in the central part of the Zagros mountain
range and features a complex geological
structure (Amiri et al., 2023). Based on the De
Martonne classification, the region's climate
is categorized as semi-arid. Precipitation
typically begins in October and continues
until late May, while dry months experience
minimal rainfall. The highest average
monthly precipitation at the Khorramabad
station is recorded in April (85.29 mm). The
lowest and highest mean monthly
temperatures occur in January (5.58°C) and
August (29.92°C), respectively (Soleimani-
Motlagh & Shakerami, 2021).
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Figure 1. Location of the study area in Lorestan Province and Iran.

Methodology
The use of vegetation indices is one of the
most practical approaches for drought

monitoring using satellite data. These indices
combine different spectral bands and leverage
the contrast between spectral ranges to

enhance the received spectral signal. This
process improves the accuracy of identifying
and analyzing different regions while
minimizing interference across various
wavelengths (Campos et al., 2012). These
characteristics make indices such as the
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Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index
(NDWI), and Normalized Difference Drought
Index (NDDI) effective tools for studying
environmental changes, analyzing vegetation
cover, and assessing drought conditions. By
utilizing these indices, spectral information is
better interpreted, and environmental
conditions can be modeled and analyzed with
greater precision. To determine the NDDI
drought index, Sentinel-2 satellite images
from 2016 to 2023 were used on a seasonal
time scale, totaling 32 images. Sentinel-2
imagery has been available since 2015, with a
temporal resolution of five days. Sentinel-2A
was launched on June 23, 2015, followed by
Sentinel-2B on March 7, 2017. The Sentinel-
2 satellites provide 12 spectral bands,
categorized as follows:

1. Three 60-meter bands: B1, B9, and B10,
2. Four 10-meter bands: B2, B3, B4, and BS,
3. Five 20-meter bands: B5, B6, B7, Bl1,

and B12.
The Google Earth Engine (GEE) system is an

advanced and efficient tool for analyzing
spatial and temporal data, offering rapid
processing and large-scale data analysis
capabilities across various environmental
fields, including drought index estimation.
This platform provides access to multiple up-
to-date satellite datasets, enabling the
extraction of indices such as the Standardized
Precipitation Index (SPI), vegetation indices,
evapotranspiration  indices, and  the
Normalized Difference Drought Index (NDDI)
with high accuracy and speed. GEE not only
enhances the accuracy and efficiency of data
analysis but also allows users to utilize real-
time, high-quality datasets for evaluating
drought conditions. In this study, the temporal
and spatial variations of the NDDI drought
index in the Khorramabad watershed were
analyzed using GEE. The primary objective is
to achieve a precise understanding of the
spatiotemporal drought patterns in this region
and provide a scientific basis for optimal water
resource  management. The  complete
workflow of the study is illustrated in Figure 2.

Coding in the Google Earth Engine
Environment

//\

Generating
Spatiotemporal Time
Series of the NDVI
Index

N

_/

Calculation of the NDDI Index and Generation of
its Spatiotemporal Time Series

Image Classification

Figure 2. Flowchart of the remote sensing-based drought (NDDI) analysis (Patil et al. 2024)

NDDI Index

The Normalized Difference Drought Index
(NDDI) is used for drought monitoring and is
derived from a combination of the NDVI and
NDWTl indices (Patil et al., 2024). High NDDI
values occur when both the vegetation index
(NDVI) and water index (NDWI) decrease.
Conversely, when NDDI values decrease,
NDVI and NDWI values increase, indicating

higher vegetation cover with sufficient
moisture (Giovanni et al., 2018; Du et al.,
2018). The NDDI is calculated using

Equation (1):
NDD] — NDVI — NDWI 0
" NDVI + NDWI

where NDVI is the Normalized Difference
Vegetation Index, NDWI is the Normalized
Difference Water Index. The drought
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intensity based on NDDI values is classified
into five categories: very low, low, moderate,

280

high, and very high, as presented in Table 1.

Table 1. Drought severity by NDDI value (Nepal et al. 2021)

No. NDDI Value Drought Severity Class
1 <2 Very Low
2 -02-0.7 Low
3 0.7-1.25 Moderate
4 1.25-3 High
5 >3 Very high
NDVI Index Equation 3:
The Normalized Difference Vegetation Index Green — NIR
(NDVI), calculated from remote sensing NDWI = ——— 3)
Green + NIR

images, is a widely used index for drought
monitoring. It is computed using Equation 2
with Sentinel-2 data. This index distinguishes
vegetation cover from the background soil
and provides valuable insights into vegetation
health (Zhang et al., 2020; Kamble et al.,
2010; Affandy et al., 2024). NDVI is based on
the difference in reflectance intensity between
the red and near-infrared bands. Positive
values indicate healthy vegetation, while
values close to zero or negative reflect low or
no vegetation (Rouse et al., 1973).

However, it is important to note that the
NDVI index alone is not sufficient for
identifying drought. Precipitation and soil
moisture data from microwave satellite
sensors are also essential for drought
monitoring. Studies have shown that NDVI
exhibits a slow response to precipitation
deficits (Sahoo et al., 2015; Liu et al., 2017),
whereas the NDWI (Normalized Difference
Water Index), which uses both bands in the
near-infrared region, is more sensitive to
rainfall (Guha, 2019).

NIR — RED

NDVI =GR T RED

2

where NIR represents the Near-Infrared band
and RED represents the Red band.

NDWI Index

The Normalized Difference Water Index
(NDWI), also referred to as the Water Index,
was first proposed by McFeeters in 1996 for
identifying surface water in wetlands and
measuring the extent of surface water. It is
calculated for the Sentinel-2 sensor using

where NIR represents the near-infrared band,
and Green represents the green band.
Accordingly, water bodies have positive
values, while vegetation and soil have values
close to zero or negative for this index
(Faizollahpour, 1402). This index is based on
the fact that liquid water bodies typically
reflect more light in the blue spectrum
compared to the green and red spectra. Clear
water appears blue due to reflection in the
visible blue spectrum, while turbid water, due
to low reflection in the near-infrared (NIR)
band, reflects more in the visible spectrum
(Affandy et al., 2024). The range of NDWI
values is from -1 to +1. If the NDWI value is
above zero, it indicates an area with surface
water; if the value is below zero, it indicates
an area without water (Rismayatika et al.,
2020). In other words, a positive NDWI
indicates no drought in the region since the
area contains water.

Forecasting Using Time Series Models
Time series modeling is an effective and
widely used method for forecasting climatic
variables. In this study, statistical models
such as AR (Equation 4), MA (Equation 5),
ARMA (Equation 6), ARIMA, and SARIMA
are employed for drought forecasting. All
these models were implemented in the R
software environment for simplification and
more accurate analysis.

Ly = @12t + @2L¢—p + -

4

+ @pZep + )

Zi = o — 0101 — B0, — ®)
- eqat_q
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Ly = @1Zy—q + -+ @y +
— 0101 — (6)
- eqat_q

In the above equations, @1, @2, and @, are the
coefficients and parameters of the AR model,
and 6., 02, and 6 q are the coefficients and
parameters of the MA model. a_t represents
the independent random variable (Box et al.,
2016). In this study, the NDDI index time
series for the years 2016 to 2023 was used for
forecasting. The data were split into two
sections: the training period (first four years)
and the validation period (next four years).
During the validation phase, the model's
performance was evaluated and compared
with actual data to test its accuracy and
efficiency. After training and validation,
drought forecasts for the next three years were
made.

During the data preparation step, the error
components, including trend, seasonal
changes, and the random component, were
removed. Then, the random component was
modeled using time series. In the model
identification phase, the most appropriate
models fitted to the data were selected. In the
model evaluation phase, the chosen model
was assessed using statistical criteria such as
the Akaike Information Criterion (AIC)
(Equation 7) and R-squared (R?) (Equation 8).
The best model for forecasting is the one with
the lowest AIC and highest R? (Akaike,
1974).

AIC(K) = nIln(MSE) + 2k 7)
R? = [EI ) Koi — o) (X5 — Xs)]?
T I (Ko — %o)? (Xgi — )2 (8)

where n is the number of time series data
points, k is the number of estimated
parameters in the models, MSE is the mean
squared error, X is the estimated values of the
variable, X.i is the observed values, X, is the
mean of the observed data and X; is the mean

of the estimated data. The R-squared value
ranges from 0 to 1, where values closer to 1
indicate a better fit of the model, and a value
of 1 indicates a perfect simulation.

Discussion and Results

NDVI Index

The NDVI index, the most prominent
vegetation index, was first introduced by
Tucker and Choudhury in 1987 for drought
monitoring. It reflects the relationship
between spectral diversity and changes in
vegetation cover at different growth rates
(Affandy et al., 2024). This index is widely
used for assessing vegetation cover at both
regional and global scales and is closely
linked to plant structure and photosynthetic
activity (Xue & Su, 2017). The spatial and
temporal patterns of the NDVI index within
the Khorramabad watershed are illustrated in
Figures 3 and 4. As shown in Figure 3, NDVI
values exhibited a declining trend from 2016
to 2023. The lowest NDVI values were
consistently observed in the western parts of
the watershed during the winter months,
while the highest values were recorded in the
central region during winter and along the
basin's edges during other seasons. Figure 4
highlights the temporal variations in NDVI,
which ranged from 0.08 in autumn 2022 to
0.23 in spring 2019. It is important to note that
a total of 32 NDVI images were analyzed for
the study period. However, due to page
limitations, only the images from the first
year (2016) and the last year (2023) are
presented in this study.

These findings provide valuable insights into
the dynamics of vegetation cover in the
Khorramabad watershed and underscore the
utility of the NDVI index in monitoring
environmental changes over time. The
observed trends can serve as a basis for
further research and inform strategies for
sustainable land and resource management in
the region.
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Figure 3. Map of spatial changes in the NDVI index in the Khorramabad watershed
in the years 2016 and 2023.
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NDWI Index

An increase in the NDWI over time can
signify an improvement in water resources,
increased rainfall, or enhanced water
conditions, while a decrease may reflect
drought, climate change, or the degradation of
water resources. The spatial and temporal
patterns of NDWI changes in the
Khorramabad watershed are illustrated in
Figures 5 and 6, respectively. According to
Figure 5, between 2016 and 2023, the highest
NDWI values were observed in the western
parts of the watershed during the winter
months, while in other seasons, they were
concentrated in the central region of the basin.
Conversely, the lowest NDWI values were
recorded in the central area during winter and
along the basin's edges during other seasons.
Figure 6 demonstrates that the temporal
changes in the NDWI index ranged from 0.08
in autumn 2022 to 0.23 in spring 2019.

Figure 7 explores the relationship between the
NDVI (Normalized Difference Vegetation
Index) and NDWI indices, revealing a strong
negative correlation between them (R? =

0.76). The results indicate that the highest
NDWI values were associated with areas of
poor vegetation cover, while the lowest
NDWI values were found in areas with dense
vegetation cover (Gerardo et al., 2022). In
other words, when NDVI values are low,
NDWI tends to increase, suggesting higher
drought intensity in the region due to the lack
of vegetation. On the other hand, when NDVI
values are high, NDWI gradually decreases,
as vegetation helps retain water in the area,
creating a favorable environment for water
and soil conservation (Huang et al., 2022).

It is important to note that a total of 32 NDWI
images were analyzed over the study period.
However, due to page limitations, only the
images from the first year (2016) and the last
year of the study period (2023) are presented.
These findings highlight the dynamic
interplay between vegetation and water
resources in the Khorramabad watershed and
provide valuable insights for understanding
drought patterns, water resource
management, and environmental
conservation in the region.
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Figure 5. Map of spatial changes in the NDWI index in the Khorramabad watershed in
the years 2016 and 2023.
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Figure 7. The relationship between the NDVI and NDWI indices.

NDDI Index

The NDDI is derived from a combination of
NDVI and NDWI data. NDVI utilizes
radiation absorption to measure chlorophyll
content and mesophyll structure in vegetation
canopies, while NDWI assesses canopy
moisture based on water content and
mesophyll properties. In the NDDI index,
lower values indicate areas with denser and
wetter vegetation cover, whereas higher
values correspond to drier regions (Affandy et
al., 2024). Figure 8 illustrates the spatial
distribution of this drought index across the
Khorramabad watershed. According to this
figure and the classification provided in Table
1, the majority of the study area over the 8-
year period falls within the "very low drought

severity" class (Row 1 in the table). As shown
in Figure 9, the temporal changes in the NDDI
index range between -3.20 and -11.21, and
throughout the study period, the area
consistently remains in the "very low drought
severity" class. Figure 8 also highlights that in
the winter of 2019, the highest NDVI value
(0.2) and the lowest NDWI value (-0.24) were
recorded. This inverse relationship between
NDVI and NDWI further underscores the
strong negative correlation observed earlier,
where areas with higher vegetation density
(high NDVI) tend to retain more moisture
(lower NDWI), while areas with sparse
vegetation (low NDVI) exhibit higher
drought intensity (higher NDWI). These
findings emphasize the utility of the NDDI
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index in monitoring drought conditions and
understanding  the interplay  between
vegetation health and water availability in the
Khorramabad watershed. The consistent
classification of the region within the "very
low drought severity" class suggests
relatively stable environmental conditions

during the study period, though localized
variations in NDVI and NDWTI highlight the
importance of continuous monitoring to
address potential future challenges related to
climate change and water resource
management.
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Figure 8. Map of spatial changes in the NDDI index in the Khorramabad
watershed in the years 2016 and 2023.
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Figure 9. Temporal changes in the NDDI index in the Khorramabad watershed from 2016 to 2023.

Prediction of NDDI Index Using Time Series Models

To predict the NDDI index, the Forecast
package in R software was used. As
mentioned in the Materials and Methods
section, the data from 2016 to 2023 were first
decomposed into random, trend, and seasonal
components using the instructions embedded
in the Forecast package (Figure 10). Then, by
training on 50% of the first portion of the data,
the models were defined, and their
coefficients and Akaike criteria were
extracted (Table 2). Next, based on the
random component of the selected models,
the prediction for the second 50% of the data
was performed, and the accuracy and fit were
evaluated through the graph in Figure 11 and
Table 2.

According to Figure 11, the models ARI,
AR2, MA1, MA2, ARMA(1,1), ARMA(2,2),
ARMA(1,2), ARMA(2,1), ARIMA(1,1,2),
and ARIMA(2,1,1) showed a good fit for the
NDDI series. Although the results of other
models, such as SARIMA(1,1,2)(0,1,2)(1,2)
and SARIMA(1,1,1)(0,1,1)(1,2), also show a
relatively good fit with the series, they
exhibited underestimation or overestimation
during extreme data events. Additionally, the
results from the model characteristics table,
such as coefficients and Akaike criteria,
indicate that the Akaike values for the models
MAI1, MA2, ARMA (1,1), and ARMA (1,2)
are below 50, while other models are above
50. For the SARIMA model series, the
Akaike values range from approximately 21
to 26. Regarding the coefficients, the absolute

values of the coefficients for the models AR1,
AR2, MA2, and the SARIMA series models
are less than 1.

Soleimani-Motlagh et al. (2017) and
Mirazavand et al. (2015) showed that a
suitable model should have a low Akaike
criterion and absolute coefficients below 1.
Based on this principle and the evaluation of
the coefficients' correlation with the NDDI
series, the AR1, AR2, and MA2 models
(which have the highest coefficient of
determination (about 92%) and coefficients
below 1 with low Akaike values) are the most
suitable models. Finally, after further
evaluation of model selection criteria, the
MA?2 model was chosen due to its Akaike
criterion being lower than 50 compared to
ARI1 and AR2 models. This model was used
for predicting the NDDI series for the years
2024 to 2026.

The prediction was made based on the
random component of the NDDI data series,
assuming that the trend and seasonal
components would follow the pattern of the
last three years. As shown in Figure 12, in
winter and spring of 2024, the NDDI index
decreased, indicating better rainfall and water
reserves, while this trend increased in summer
and autumn of 2024, reflecting a shortage of
rainfall, water reserves, and reduced
vegetation cover. This trend is expected to
continue the following year, with improved
water resource conditions expected in the
spring and winter of 2025 and 2026.
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Figure 10. Decomposition of the NDDI time series into random, trend, and seasonal components.

Table 2. Results of time series models for the NDDI index in the Khorramabad watershed.

No.
1

2
3
4

10

11

12

Time Series
AR(1)

AR(2)
MA(1)
MA(2)

ARMA(1,1)

ARMA(1,2)

ARMA(2,1)

ARMA(2,2)

ARIMA(1,1,2)

ARIMA(2,1,1)

SARIMA(1,1,2)(0,1,2)(1,2)

SARIMA(1,1,1)(0,1,1)(1,2)

Coeft.
ARI1
ARI1
AR2
MA1
MA1
MA2
ARI1
MA1
ARI1
MA1
MA2
ARI1
AR2
MA1
ARI1
AR2
MAI1
MA2
ARI1
d
MAI1
MA2
ARI1
AR2
d
MAI1
ARI1
MAI1
MA2
SMAL1
SMA2
ARI1
MA1
SMAL1

-0.3363
-0.4616
-0.3259
-1
-0.8586
-0.1414
0.0969
-1
-0.7190
0
-1
0.08
-0.19
-1
-0.7582
-0.0663
0
-1
0.2180
1
-1.9699
1
-0.4161
-0.2828
1
-1
-0.0589
-0.0607
-0.2506
0
0
0.6235
-0.9998
0.7784

AIC
52.42

52.51
47.19
47.97

49.05

49.65

50.47

51.59

53.22

54.52

25.82

21.84

R2
0.92

0.92
0.92
0.92

0.92

0.92

0.92

0.91

0.92

0.92

0.42

0.31

RMSE
0.39

0.40
0.38
0.38

0.38

0.38

0.38

0.41

0.37

0.40

1.42

5.83
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Figure 11. Fit of time series models to the NDDI series.

The best model identified was MA2 (Moving
Average of order 2). The next step involved
making predictions for the next seasons,
spanning from Winter 2020 to Autumn 2023,
as detailed in Table 3. To evaluate the
accuracy of the forecasts, the Mean Squared
Error (MSE) method was employed. A low

Table 3. Results of NDDI using MA2

MSE value, or one close to zero, indicates that
the forecasted results closely align with the
actual data, making the model suitable for
future forecasting. In this study, the obtained
MSE value was 0.15, demonstrating the
model's reliability for predictive calculations.

Number Period Actual  Forecast  Number Period Actual  Forecast
1 Winter 2020 -5.92 -6.35 9 Winter 2022 -5.11 -5.80
2 Spring 2020 -5.51 -5.77 10 Spring 2022 -5.03 -5.29
3 Summer 2020 -3.65 -3.57 11 Summer 2022 -3.40 -3.32
4 Autumn 2020 -3.81 -3.58 12 Autumn 2022 -3.62 -3.84
5 Winter 2021 -6.36 -6.30 13 Winter 2023 -7.00 -6.93
6 Spring 2021 -5.06 -5.65 14 Spring 2023 -7.20 -6.43
7 Summer 2021 -3.47 -3.16 15 Summer 2023 -3.63 -4.13
8 Autumn 2021 -3.21 -3.01 16 Autumn 2023 -3.78 -4.19
0
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Figure 12. Prediction of the NDDI series based on the MA2 model.



Elham Davoodi et al., / Environmental Resources Research 13, 2 (2025) 290

Conclusion

In this study, we examined the drought status
in the Khorramabad watershed from 2016 to
2023 wusing the Normalized Difference
Drought Index (NDDI) to assess vegetation
cover and water bodies. The results revealed
that higher vegetation density, as indicated by
higher NDVI values, corresponds to lower
NDDI values, reflecting reduced drought
severity. This finding aligns with the results
of Artikanur et al. (2022). Furthermore, the
analysis of the relationship between NDVI
and NDWI demonstrated a strong negative
correlation, consistent with the findings of
Gerardo et al. (2022). When NDVI values are
low, NDWI values tend to increase,
indicating higher drought intensity due to
reduced vegetation. Conversely, as NDVI
increases, NDWI values gradually decrease.
This relationship underscores the critical role
of vegetation in water storage and drought
mitigation, as vegetation helps maintain soil
moisture and regulate the water cycle, in line
with the results of Huang et al. (2022). By
evaluating various time series models for
predicting NDDI-based drought conditions,
the MA2 model was identified as the best
predictive model, supported by an Akaike
Information Criterion (AIC) value of less than
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