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Abstract 
Remote sensing-based indices are effective tools for monitoring 

drought and wet conditions. In this study, the Normalized Difference 

Drought Index (NDDI), derived from NDVI (Normalized Difference 

Vegetation Index) and NDWI (Normalized Difference Water Index) 

data obtained from Sentinel-2 satellite imagery, was employed to 

assess drought conditions. Time series of these indices were generated 

using coding in the Google Earth Engine (GEE) platform, and the 

NDDI was subsequently calculated in Excel. Additionally, future 

predictions of the NDDI were conducted using time series modeling 

techniques. The results indicate that the NDDI is a reliable indicator 

for representing droughts caused by water scarcity and reduced 

vegetation cover. Analysis of NDDI values from 2016 to 2023 in the 

Khorramabad watershed revealed a range between -3.20 and -11.21, 

suggesting that the region generally experienced very low drought 

intensity during this period. Furthermore, drought prediction results 

based on NDDI, using time series modeling, identified the MA2 

model as the most accurate, with a high coefficient of determination 

(R² = 0.92) and an Akaike Information Criterion (AIC) value of less 

than 50. The findings indicate that the decline in NDDI during the 

spring (-5.3) and winter (-5.4) of 2024 reflects improvements in 

relative vegetation cover, precipitation levels, and water reserves. 

However, an increase in this index during the summer and autumn 

(approximately -3) of 2024 suggests worsening drought conditions 

and reduced rainfall. This trend is projected to persist across different 

seasons in 2025 and 2026. In conclusion, the NDDI is recommended 

as a valuable tool for analyzing vegetation cover status and water 

fluctuations, enabling optimal watershed management strategies. 
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Introduction 

Drought is one of the most complex and 

destructive natural phenomena, profoundly 

affecting all living organisms. It is defined as 

a deficiency in water resources compared to 

normal conditions, with far-reaching impacts 

on the environment, economy, and human 

societies. Drought is particularly detrimental 

to the agricultural sector, as reduced water 

availability leads to decreased crop 

production and threatens food security. This 

phenomenon also triggers significant social 

and economic consequences, including forced 

migration, increased water management 

costs, and social tensions (Mishra et al., 2022; 

Zeng et al., 2022; West et al., 2019; Lesk et 

al., 2016). In recent decades, numerous 

methods have been developed to study and 

assess drought, utilizing factors such as 

precipitation, soil moisture, temperature, 

vegetation indices, and other climatic 

variables. These methods aim to enhance the 

monitoring of drought conditions and 

evaluate their intensity and spatial extent. 

Commonly used indices include the 

Standardized Precipitation Index (SPI), soil 

moisture index, Normalized Difference 

Vegetation Index (NDVI), Vegetation 

Condition Index (VCI), and 

evapotranspiration index. These indices 

provide comprehensive insights into climatic 

conditions and the impacts of drought on 

natural resources, agriculture, and 

ecosystems, thereby supporting decision-

making processes and mitigating the adverse 

effects of drought (Dalezios et al., 2019). 

Advancements in remote sensing technology 

have further enabled researchers to utilize 

various types of remote sensing data, 

including multispectral, thermal infrared, and 

microwave data, for large-scale drought 

monitoring. Remote sensing offers a 

comprehensive view of the Earth and a spatial 

framework for assessing drought impacts. It 

serves as a valuable source of continuous 

spatial and temporal data, facilitating the 

monitoring of vegetation dynamics across 

extensive regions (Hao et al., 2015). 

One of the recent remote-sensing-based 

indices is the Normalized Difference Drought 

Index (NDDI). This index evaluates drought 

conditions by integrating data on soil 

moisture content and vegetation health, 

providing a comprehensive measure of an 

area’s dryness or wetness. The NDDI is 

considered a superior tool for drought 

monitoring due to the following advantages:  

Dual Monitoring Capability: By 

simultaneously assessing soil moisture and 

vegetation health, the NDDI captures two 

critical factors that influence drought 

severity, offering a more holistic evaluation. 

Precipitation Sensitivity: The NDDI reflects 

the effects of precipitation more accurately 

than indices that focus exclusively on 

vegetation or soil metrics, making it more 

responsive to changes in water availability. 

 

Reduced Environmental Noise: Unlike 

traditional indices such as the Normalized 

Difference Vegetation Index (NDVI) or the 

Normalized Difference Water Index (NDWI), 

the NDDI minimizes interference from 

atmospheric variations and seasonal 

vegetation changes, enhancing its reliability. 

 

Satellite-Derived Simplicity: The NDDI 

relies entirely on satellite data, eliminating the 

need for supplementary ground-based 

meteorological measurements and 

simplifying its application across large and 

remote areas. 

These advantages make the NDDI an 

excellent tool for accurately monitoring 

drought conditions and their impacts (Du et 

al., 2018; Xie et al., 2021). Trinh et al. (2019) 

examined the application of remote sensing 

techniques for drought assessment using the 

Normalized Difference Drought Index 

(NDDI) in Binh Thuan Province, Vietnam. 

They concluded that the results could be used 

to create drought-level maps and provide 

valuable information to help managers 

implement measures to minimize drought-

related damage. Similarly, Rismayatika et al. 

(2020) applied the NDDI to identify dry areas 

on agricultural land in Magetan Regency, 

Indonesia, demonstrating its ability to detect 

drought with acceptable accuracy. Artikanur 
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et al. (2022) utilized the NDDI to map 

drought intensity in the Bojonegoro region of 

Indonesia, identifying it as a suitable index 

for drought estimation and prediction. Salas-

Martinez et al. (2023) estimated the NDDI 

using Landsat 8 multispectral images in the 

central zone of the Gulf of Mexico. They 

concluded that the NDDI effectively 

characterizes drought behavior during periods 

of reduced precipitation and increased 

temperatures. Patil et al. (2024) introduced 

the NDDI in a remote sensing-based study, 

combining NDVI and NDWI indices, and 

described it as an independent index that 

complements conventional drought 

estimation techniques. Affandy et al. (2024) 

employed the NDDI to assess agricultural 

drought in the Corong River basin, 

confirming its effectiveness in drought 

monitoring. Li et al. (2024) developed a novel 

composite drought index integrating 

precipitation, temperature, and 

evapotranspiration for drought monitoring in 

the Huang-Huai-Hai Plain. They used time-

series analysis methods to analyze drought 

evolution, highlighting the index's utility in 

understanding drought patterns. Alshahrani et 

al. (2024) applied a Support Vector Machine-

based Drought Index (SVM-DI) for regional 

drought analysis in northern Pakistan. They 

concluded that the SVM-DI methodology 

provides a unique approach to reducing the 

impact of extreme values and outliers when 

aggregating regional precipitation data. 

This study leverages modern remote sensing 

methods and time-series analysis of the NDDI 

to enhance the understanding of drought 

patterns in the Khorramabad region, offering 

a robust tool for drought prediction and 

management. Conducting this research is 

essential, as its findings can contribute to 

scientific and executive decision-making in 

drought crisis management. The innovation 

of this research lies in its application of the 

NDDI for the first time in Iran, specifically 

within the Khorramabad watershed, to obtain 

and analyze drought conditions. 

Materials and Methods 

Study Area 

The study area is the Khorramabad 

Watershed, located in Lorestan Province, 

Iran, and is a sub-basin of the Karkheh River 

basin. Covering an area of 161913 hectares, it 

includes the sub-basins adjacent to the city of 

Khorramabad and the Cham-Anjir River. 

Geographically, the watershed is situated 

between longitudes 48°03'36'' to 48°46'12'' E 

and latitudes 33°15'36'' to 33°43'44'' N, 

encompassing the Kamalvand and Central 

Khorramabad plains. The region is connected 

to neighboring counties via major roads, 

including the Borujerd-Khorramabad, 

Poldokhtar-Khorramabad, and Dorud-

Khorramabad highways (Figure 1). The 

average annual precipitation and temperature 

recorded at the Khorramabad meteorological 

station are 466.44 mm and 16.98°C, 

respectively, with an average annual 

evaporation of 209 mm. The basin is located 

in the central part of the Zagros mountain 

range and features a complex geological 

structure (Amiri et al., 2023). Based on the De 

Martonne classification, the region's climate 

is categorized as semi-arid. Precipitation 

typically begins in October and continues 

until late May, while dry months experience 

minimal rainfall. The highest average 

monthly precipitation at the Khorramabad 

station is recorded in April (85.29 mm). The 

lowest and highest mean monthly 

temperatures occur in January (5.58°C) and 

August (29.92°C), respectively (Soleimani-

Motlagh & Shakerami, 2021).
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Figure 1. Location of the study area in Lorestan Province and Iran. 

 

Methodology 

The use of vegetation indices is one of the 

most practical approaches for drought 

monitoring using satellite data. These indices 

combine different spectral bands and leverage 

the contrast between spectral ranges to 

enhance the received spectral signal. This 

process improves the accuracy of identifying 

and analyzing different regions while 

minimizing interference across various 

wavelengths (Campos et al., 2012). These 

characteristics make indices such as the 
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Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Water Index 

(NDWI), and Normalized Difference Drought 

Index (NDDI) effective tools for studying 

environmental changes, analyzing vegetation 

cover, and assessing drought conditions. By 

utilizing these indices, spectral information is 

better interpreted, and environmental 

conditions can be modeled and analyzed with 

greater precision. To determine the NDDI 

drought index, Sentinel-2 satellite images 

from 2016 to 2023 were used on a seasonal 

time scale, totaling 32 images. Sentinel-2 

imagery has been available since 2015, with a 

temporal resolution of five days. Sentinel-2A 

was launched on June 23, 2015, followed by 

Sentinel-2B on March 7, 2017. The Sentinel-

2 satellites provide 12 spectral bands, 

categorized as follows: 

1. Three 60-meter bands: B1, B9, and B10, 

2. Four 10-meter bands: B2, B3, B4, and B8, 

3. Five 20-meter bands: B5, B6, B7, B11, 

and B12. 

The Google Earth Engine (GEE) system is an 

advanced and efficient tool for analyzing 

spatial and temporal data, offering rapid 

processing and large-scale data analysis 

capabilities across various environmental 

fields, including drought index estimation. 

This platform provides access to multiple up-

to-date satellite datasets, enabling the 

extraction of indices such as the Standardized 

Precipitation Index (SPI), vegetation indices, 

evapotranspiration indices, and the 

Normalized Difference Drought Index (NDDI) 

with high accuracy and speed. GEE not only 

enhances the accuracy and efficiency of data 

analysis but also allows users to utilize real-

time, high-quality datasets for evaluating 

drought conditions. In this study, the temporal 

and spatial variations of the NDDI drought 

index in the Khorramabad watershed were 

analyzed using GEE. The primary objective is 

to achieve a precise understanding of the 

spatiotemporal drought patterns in this region 

and provide a scientific basis for optimal water 

resource management. The complete 

workflow of the study is illustrated in Figure 2.
 

 
Figure 2. Flowchart of the remote sensing-based drought (NDDI) analysis (Patil et al. 2024) 

 

NDDI Index 
The Normalized Difference Drought Index 

(NDDI) is used for drought monitoring and is 

derived from a combination of the NDVI and 

NDWI indices (Patil et al., 2024). High NDDI 

values occur when both the vegetation index 

(NDVI) and water index (NDWI) decrease. 

Conversely, when NDDI values decrease, 

NDVI and NDWI values increase, indicating 

higher vegetation cover with sufficient 

moisture (Giovanni et al., 2018; Du et al., 

2018). The NDDI is calculated using 

Equation (1): 

(1) 𝑁𝐷𝐷𝐼 =
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑊𝐼
 

where NDVI is the Normalized Difference 

Vegetation Index, NDWI is the Normalized 

Difference Water Index. The drought 
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intensity based on NDDI values is classified 

into five categories: very low, low, moderate, 

high, and very high, as presented in Table 1.

 
Table 1. Drought severity by NDDI value (Nepal et al. 2021) 

No. NDDI Value Drought Severity Class 

1 <-2 Very Low 

2 -02 - 0.7 Low 

3 0.7 - 1.25 Moderate 

4 1.25 - 3 High 

5 >3 Very high 

 

NDVI Index 
The Normalized Difference Vegetation Index 

(NDVI), calculated from remote sensing 

images, is a widely used index for drought 

monitoring. It is computed using Equation 2 

with Sentinel-2 data. This index distinguishes 

vegetation cover from the background soil 

and provides valuable insights into vegetation 

health (Zhang et al., 2020; Kamble et al., 

2010; Affandy et al., 2024). NDVI is based on 

the difference in reflectance intensity between 

the red and near-infrared bands. Positive 

values indicate healthy vegetation, while 

values close to zero or negative reflect low or 

no vegetation (Rouse et al., 1973). 

However, it is important to note that the 

NDVI index alone is not sufficient for 

identifying drought. Precipitation and soil 

moisture data from microwave satellite 

sensors are also essential for drought 

monitoring. Studies have shown that NDVI 

exhibits a slow response to precipitation 

deficits (Sahoo et al., 2015; Liu et al., 2017), 

whereas the NDWI (Normalized Difference 

Water Index), which uses both bands in the 

near-infrared region, is more sensitive to 

rainfall (Guha, 2019). 

(2) 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 

where NIR represents the Near-Infrared band 

and RED represents the Red band. 

NDWI Index 

The Normalized Difference Water Index 

(NDWI), also referred to as the Water Index, 

was first proposed by McFeeters in 1996 for 

identifying surface water in wetlands and 

measuring the extent of surface water. It is 

calculated for the Sentinel-2 sensor using  

Equation 3: 

(3) 𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

where NIR represents the near-infrared band, 

and Green represents the green band. 

Accordingly, water bodies have positive 

values, while vegetation and soil have values 

close to zero or negative for this index 

(Faizollahpour, 1402). This index is based on 

the fact that liquid water bodies typically 

reflect more light in the blue spectrum 

compared to the green and red spectra. Clear 

water appears blue due to reflection in the 

visible blue spectrum, while turbid water, due 

to low reflection in the near-infrared (NIR) 

band, reflects more in the visible spectrum 

(Affandy et al., 2024). The range of NDWI 

values is from -1 to +1. If the NDWI value is 

above zero, it indicates an area with surface 

water; if the value is below zero, it indicates 

an area without water (Rismayatika et al., 

2020). In other words, a positive NDWI 

indicates no drought in the region since the 

area contains water. 

Forecasting Using Time Series Models  

Time series modeling is an effective and 

widely used method for forecasting climatic 

variables. In this study, statistical models 

such as AR (Equation 4), MA (Equation 5), 

ARMA (Equation 6), ARIMA, and SARIMA 

are employed for drought forecasting. All 

these models were implemented in the R 

software environment for simplification and 

more accurate analysis. 

 (4) Zt = φ1Zt−1 + φ2Zt−2 +⋯
+φpZt−p + αt 

(5) Zt = αt − θ1αt−1 − θ2αt−2 −⋯
− θqαt−q 
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(6) 
Zt = φ1Zt−1 +⋯+φpZp−t + αt

− θ1αt−1 −⋯
− θqαt−q 

In the above equations, φ₁, φ₂, and φₚ are the 

coefficients and parameters of the AR model, 

and θ₁, θ₂, and θ_q are the coefficients and 

parameters of the MA model. α_t represents 

the independent random variable (Box et al., 

2016). In this study, the NDDI index time 

series for the years 2016 to 2023 was used for 

forecasting. The data were split into two 

sections: the training period (first four years) 

and the validation period (next four years). 

During the validation phase, the model's 

performance was evaluated and compared 

with actual data to test its accuracy and 

efficiency. After training and validation, 

drought forecasts for the next three years were 

made. 

During the data preparation step, the error 

components, including trend, seasonal 

changes, and the random component, were 

removed. Then, the random component was 

modeled using time series. In the model 

identification phase, the most appropriate 

models fitted to the data were selected. In the 

model evaluation phase, the chosen model 

was assessed using statistical criteria such as 

the Akaike Information Criterion (AIC) 

(Equation 7) and R-squared (R²) (Equation 8). 

The best model for forecasting is the one with 

the lowest AIC and highest R² (Akaike, 

1974). 

(7) AIC(K) = nln(MSE) + 2k 

(8) R2 =
[∑ (xoi − x̅o)(xsi − x̅s)

n
i=1 ]2

∑ (xoi − x̅o)
2n

i=1 (xsi − x̅s)
2
 

where n is the number of time series data 

points, k is the number of estimated 

parameters in the models, MSE is the mean 

squared error, xsi is the estimated values of the 

variable, xoi is the observed values, x̅o is the 

mean of the observed data and x̅s is the mean 

of the estimated data. The R-squared value 

ranges from 0 to 1, where values closer to 1 

indicate a better fit of the model, and a value 

of 1 indicates a perfect simulation. 

Discussion and Results 

NDVI Index 

The NDVI index, the most prominent 

vegetation index, was first introduced by 

Tucker and Choudhury in 1987 for drought 

monitoring. It reflects the relationship 

between spectral diversity and changes in 

vegetation cover at different growth rates 

(Affandy et al., 2024). This index is widely 

used for assessing vegetation cover at both 

regional and global scales and is closely 

linked to plant structure and photosynthetic 

activity (Xue & Su, 2017). The spatial and 

temporal patterns of the NDVI index within 

the Khorramabad watershed are illustrated in 

Figures 3 and 4. As shown in Figure 3, NDVI 

values exhibited a declining trend from 2016 

to 2023. The lowest NDVI values were 

consistently observed in the western parts of 

the watershed during the winter months, 

while the highest values were recorded in the 

central region during winter and along the 

basin's edges during other seasons. Figure 4 

highlights the temporal variations in NDVI, 

which ranged from 0.08 in autumn 2022 to 

0.23 in spring 2019. It is important to note that 

a total of 32 NDVI images were analyzed for 

the study period. However, due to page 

limitations, only the images from the first 

year (2016) and the last year (2023) are 

presented in this study. 

These findings provide valuable insights into 

the dynamics of vegetation cover in the 

Khorramabad watershed and underscore the 

utility of the NDVI index in monitoring 

environmental changes over time. The 

observed trends can serve as a basis for 

further research and inform strategies for 

sustainable land and resource management in 

the region.
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Figure 3. Map of spatial changes in the NDVI index in the Khorramabad watershed  

in the years 2016 and 2023. 
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Figure 4. Temporal changes in the NDVI index in the Khorramabad  

watershed from 2016 to 2023. 

 

NDWI Index 

An increase in the NDWI over time can 

signify an improvement in water resources, 

increased rainfall, or enhanced water 

conditions, while a decrease may reflect 

drought, climate change, or the degradation of 

water resources. The spatial and temporal 

patterns of NDWI changes in the 

Khorramabad watershed are illustrated in 

Figures 5 and 6, respectively. According to 

Figure 5, between 2016 and 2023, the highest 

NDWI values were observed in the western 

parts of the watershed during the winter 

months, while in other seasons, they were 

concentrated in the central region of the basin. 

Conversely, the lowest NDWI values were 

recorded in the central area during winter and 

along the basin's edges during other seasons. 

Figure 6 demonstrates that the temporal 

changes in the NDWI index ranged from 0.08 

in autumn 2022 to 0.23 in spring 2019. 

Figure 7 explores the relationship between the 

NDVI (Normalized Difference Vegetation 

Index) and NDWI indices, revealing a strong 

negative correlation between them (R² = 

0.76). The results indicate that the highest 

NDWI values were associated with areas of 

poor vegetation cover, while the lowest 

NDWI values were found in areas with dense 

vegetation cover (Gerardo et al., 2022). In 

other words, when NDVI values are low, 

NDWI tends to increase, suggesting higher 

drought intensity in the region due to the lack 

of vegetation. On the other hand, when NDVI 

values are high, NDWI gradually decreases, 

as vegetation helps retain water in the area, 

creating a favorable environment for water 

and soil conservation (Huang et al., 2022). 

It is important to note that a total of 32 NDWI 

images were analyzed over the study period. 

However, due to page limitations, only the 

images from the first year (2016) and the last 

year of the study period (2023) are presented. 

These findings highlight the dynamic 

interplay between vegetation and water 

resources in the Khorramabad watershed and 

provide valuable insights for understanding 

drought patterns, water resource 

management, and environmental 

conservation in the region. 
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Figure 5. Map of spatial changes in the NDWI index in the Khorramabad watershed in  

the years 2016 and 2023. 
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Figure 6. Temporal changes in the NDWI index in the Khorramabad watershed from 2016 to 2023. 

 

 
Figure 7. The relationship between the NDVI and NDWI indices. 

 

NDDI Index 

The NDDI is derived from a combination of 

NDVI and NDWI data. NDVI utilizes 

radiation absorption to measure chlorophyll 

content and mesophyll structure in vegetation 

canopies, while NDWI assesses canopy 

moisture based on water content and 

mesophyll properties. In the NDDI index, 

lower values indicate areas with denser and 

wetter vegetation cover, whereas higher 

values correspond to drier regions (Affandy et 

al., 2024). Figure 8 illustrates the spatial 

distribution of this drought index across the 

Khorramabad watershed. According to this 

figure and the classification provided in Table 

1, the majority of the study area over the 8-

year period falls within the "very low drought 

severity" class (Row 1 in the table). As shown 

in Figure 9, the temporal changes in the NDDI 

index range between -3.20 and -11.21, and 

throughout the study period, the area 

consistently remains in the "very low drought 

severity" class. Figure 8 also highlights that in 

the winter of 2019, the highest NDVI value 

(0.2) and the lowest NDWI value (-0.24) were 

recorded. This inverse relationship between 

NDVI and NDWI further underscores the 

strong negative correlation observed earlier, 

where areas with higher vegetation density 

(high NDVI) tend to retain more moisture 

(lower NDWI), while areas with sparse 

vegetation (low NDVI) exhibit higher 

drought intensity (higher NDWI). These 

findings emphasize the utility of the NDDI 
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index in monitoring drought conditions and 

understanding the interplay between 

vegetation health and water availability in the 

Khorramabad watershed. The consistent 

classification of the region within the "very 

low drought severity" class suggests 

relatively stable environmental conditions 

during the study period, though localized 

variations in NDVI and NDWI highlight the 

importance of continuous monitoring to 

address potential future challenges related to 

climate change and water resource 

management.

 

   

   

   

   
 

Figure 8. Map of spatial changes in the NDDI index in the Khorramabad  

watershed in the years 2016 and 2023. 
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Figure 9. Temporal changes in the NDDI index in the Khorramabad watershed from 2016 to 2023. 

 

Prediction of NDDI Index Using Time Series Models 

To predict the NDDI index, the Forecast 

package in R software was used. As 

mentioned in the Materials and Methods 

section, the data from 2016 to 2023 were first 

decomposed into random, trend, and seasonal 

components using the instructions embedded 

in the Forecast package (Figure 10). Then, by 

training on 50% of the first portion of the data, 

the models were defined, and their 

coefficients and Akaike criteria were 

extracted (Table 2). Next, based on the 

random component of the selected models, 

the prediction for the second 50% of the data 

was performed, and the accuracy and fit were 

evaluated through the graph in Figure 11 and 

Table 2. 

According to Figure 11, the models AR1, 

AR2, MA1, MA2, ARMA(1,1), ARMA(2,2), 

ARMA(1,2), ARMA(2,1), ARIMA(1,1,2), 

and ARIMA(2,1,1) showed a good fit for the 

NDDI series. Although the results of other 

models, such as SARIMA(1,1,2)(0,1,2)(1,2) 

and SARIMA(1,1,1)(0,1,1)(1,2), also show a 

relatively good fit with the series, they 

exhibited underestimation or overestimation 

during extreme data events. Additionally, the 

results from the model characteristics table, 

such as coefficients and Akaike criteria, 

indicate that the Akaike values for the models 

MA1, MA2, ARMA (1,1), and ARMA (1,2) 

are below 50, while other models are above 

50. For the SARIMA model series, the 

Akaike values range from approximately 21 

to 26. Regarding the coefficients, the absolute 

values of the coefficients for the models AR1, 

AR2, MA2, and the SARIMA series models 

are less than 1. 

Soleimani-Motlagh et al. (2017) and 

Mirazavand et al. (2015) showed that a 

suitable model should have a low Akaike 

criterion and absolute coefficients below 1. 

Based on this principle and the evaluation of 

the coefficients' correlation with the NDDI 

series, the AR1, AR2, and MA2 models 

(which have the highest coefficient of 

determination (about 92%) and coefficients 

below 1 with low Akaike values) are the most 

suitable models. Finally, after further 

evaluation of model selection criteria, the 

MA2 model was chosen due to its Akaike 

criterion being lower than 50 compared to 

AR1 and AR2 models. This model was used 

for predicting the NDDI series for the years 

2024 to 2026. 

The prediction was made based on the 

random component of the NDDI data series, 

assuming that the trend and seasonal 

components would follow the pattern of the 

last three years. As shown in Figure 12, in 

winter and spring of 2024, the NDDI index 

decreased, indicating better rainfall and water 

reserves, while this trend increased in summer 

and autumn of 2024, reflecting a shortage of 

rainfall, water reserves, and reduced 

vegetation cover. This trend is expected to 

continue the following year, with improved 

water resource conditions expected in the 

spring and winter of 2025 and 2026. 
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Figure 10. Decomposition of the NDDI time series into random, trend, and seasonal components. 

 
Table 2. Results of time series models for the NDDI index in the Khorramabad watershed. 

RMSE 2R AIC Coeff. Time Series No. 
0.39 0.92 52.42 -0.3363 AR1 AR(1) 1 

0.40 0.92 52.51 
-0.4616 AR1 

AR(2) 2 
-0.3259 AR2 

0.38 0.92 47.19 -1 MA1 MA(1) 3 

0.38 0.92 47.97 
-0.8586 MA1 

MA(2) 4 
-0.1414 MA2 

0.38 0.92 49.05 
0.0969 AR1 

ARMA(1,1) 5 
-1 MA1 

0.38 0.92 49.65 
-0.7190 AR1 

ARMA(1,2) 6 0 MA1 

-1 MA2 

0.38 0.92 50.47 
0.08 AR1 

ARMA(2,1) 7 -0.19 AR2 

-1 MA1 

0.41 0.91 51.59 

-0.7582 AR1 

ARMA(2,2) 8 
-0.0663 AR2 

0 MA1 

-1 MA2 

0.37 0.92 53.22 

0.2180 AR1 

ARIMA(1,1,2) 9 
1 d 

-1.9699 MA1 

1 MA2 

0.40 0.92 54.52 

-0.4161 AR1 

ARIMA(2,1,1) 10 
-0.2828 AR2 

1 d 

-1 MA1 

1.42 0.42 25.82 

-0.0589 AR1 

SARIMA(1,1,2)(0,1,2)(1,2) 11 
-0.0607 MA1 

-0.2506 MA2 

0 SMA1 

0 SMA2 

5.83 0.31 21.84 
0.6235 AR1 

SARIMA(1,1,1)(0,1,1)(1,2) 12 -0.9998 MA1 

0.7784 SMA1 
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Figure 11. Fit of time series models to the NDDI series. 

 

The best model identified was MA2 (Moving 

Average of order 2). The next step involved 

making predictions for the next seasons, 

spanning from Winter 2020 to Autumn 2023, 

as detailed in Table 3. To evaluate the 

accuracy of the forecasts, the Mean Squared 

Error (MSE) method was employed. A low 

MSE value, or one close to zero, indicates that 

the forecasted results closely align with the 

actual data, making the model suitable for 

future forecasting. In this study, the obtained 

MSE value was 0.15, demonstrating the 

model's reliability for predictive calculations.

 
Table 3. Results of NDDI using MA2 

Number Period Actual Forecast Number Period Actual Forecast 

1 Winter 2020 -5.92 -6.35 9 Winter 2022 -5.11 -5.80 

2 Spring 2020 -5.51 -5.77 10 Spring 2022 -5.03 -5.29 

3 Summer 2020 -3.65 -3.57 11 Summer 2022 -3.40 -3.32 

4 Autumn 2020 -3.81 -3.58 12 Autumn 2022 -3.62 -3.84 

5 Winter 2021 -6.36 -6.30 13 Winter 2023 -7.00 -6.93 

6 Spring 2021 -5.06 -5.65 14 Spring 2023 -7.20 -6.43 

7 Summer 2021 -3.47 -3.16 15 Summer 2023 -3.63 -4.13 

8 Autumn 2021 -3.21 -3.01 16 Autumn 2023 -3.78 -4.19 

 

 
Figure 12. Prediction of the NDDI series based on the MA2 model. 
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Conclusion 
In this study, we examined the drought status 

in the Khorramabad watershed from 2016 to 

2023 using the Normalized Difference 

Drought Index (NDDI) to assess vegetation 

cover and water bodies. The results revealed 

that higher vegetation density, as indicated by 

higher NDVI values, corresponds to lower 

NDDI values, reflecting reduced drought 

severity. This finding aligns with the results 

of Artikanur et al. (2022). Furthermore, the 

analysis of the relationship between NDVI 

and NDWI demonstrated a strong negative 

correlation, consistent with the findings of 

Gerardo et al. (2022). When NDVI values are 

low, NDWI values tend to increase, 

indicating higher drought intensity due to 

reduced vegetation. Conversely, as NDVI 

increases, NDWI values gradually decrease. 

This relationship underscores the critical role 

of vegetation in water storage and drought 

mitigation, as vegetation helps maintain soil 

moisture and regulate the water cycle, in line 

with the results of Huang et al. (2022). By 

evaluating various time series models for 

predicting NDDI-based drought conditions, 

the MA2  model was identified as the best 

predictive model, supported by an Akaike 

Information Criterion (AIC) value of less than 

50. The results indicate that the decrease in 

the NDDI index during spring and winter 

2024 reflects improved rainfall and water 

reserves. Additionally, predictions suggest a 

declining trend in the index for spring and 

winter 2025 and 2026, attributed to increased 

rainfall, enhanced water storage, and 

expanded vegetation cover. Conversely, the 

increasing trend in the index during summer 

and autumn of 2025 and 2026 is linked to 

reduced rainfall, declining water reserves, and 

deteriorating vegetation cover. The 

predictions also highlight an improvement in 

water resources during winter 2026, with 

conditions expected to be better than in 

previous periods. These findings emphasize 

the importance of analyzing seasonal trends 

and cyclical patterns for effective water 

resource management and agricultural 

planning. Overall, this study demonstrates the 

effectiveness and reliability of NDVI, NDWI, 

and NDDI as robust indices for monitoring 

vegetation dynamics and drought stress 

conditions. 
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