

Environmental Resources Research (ERR)

Print ISSN: 2783-4832 Online ISSN: 2783-4670

Prioritizing the causes of desertification and its control strategies using the DPSIR. Case study: Ivanki, Semnan Province

Zohreh Shahriari¹, Mohammadkia Kianian^{2*}, Mohammadreza Yazdani³, Amin Salehpour Jam⁴

- ¹ Master's student, Faculty of Desert studies, Semnan University, Seman, Iran
- ² Assistant Professor, Faculty of Desert studies, Semnan University, Seman, Iran
- ³ Associate Professor, Faculty of Desert studies, Semnan University, Seman, Iran
- ⁴ Associate Professor, Soil Conservation and Watershed Management Research Institute, Tehran Agricultural Research, Education and Extension Organization, Tehran, Iran

Education and Extension C	Organization, Tehran, Iran
Article Info	Abstract
Article type:	The most important step in assessing and controlling desertification is
Research Article	identifying relevant indicators and determining their significance. This
	study applied the DPSIR framework—comprising the components of
	Driving forces, Pressures, State, Impacts, and Responses—in the study
	area. The results from 180 questionnaires were analyzed using SPSS
Autiala biatau	software and prioritized with the Friedman test. The analysis identified
Article history: Received: January 2025	6 driving forces, 13 pressures, 3 state factors, 9 impacts, and 32
Accepted: March 2025	responses. A Cronbach's alpha coefficient of 0.87 for the expert-
	completed questionnaire confirmed satisfactory levels of validity and
	reliability. According to the results, the most significant response for
	controlling desertification was "reviewing population growth policies
Corresponding author:	in land use planning," while the least important was "desilting
m_kianian@semnan.ac.ir	operations in dams." The most important driving force was identified
	as "population growth," and the least important was "industrial
	development." For pressures, the most and least significant were
	"improper land use change" and "fires," respectively. Implementing
Keywords : Causal-Effect Approach	various reactive and preventive responses based on these priorities is
Desert	crucial for enhancing ecosystem health and preventing the spread of
Garmsar	desertification in the region.

Cite this article: Shahriari, Zohreh; Kianian, Mohammadkia; Yazdani, Mohammadreza; Salehpour Jam; Amin. 2025. Prioritizing the causes of desertification and its control strategies using the DPSIR (case study: Ivanki, Semnan province). *Environmental Resources Research*, 13(2), 237-249.

© The Author(s). DOI: 10.22069/IJERR.2025.23221.1472 Publisher: Gorgan University of Agricultural Sciences and Natural Resources

Introduction

Desertification has a profound widespread impact on arid lands around the world and is considered a serious challenge for human societies (Akbari et al., 2024; Sarbazi et al., 2022). This phenomenon is often accompanied by changes that can last for years, leading to permanent and irreversible consequences (Gray et al., 2018; Talebanfard et al., 2022;). The factors influencing desertification include both environmental (climatic and geological) and human activities, with human factors being the most significant (Akbari et al., 2020a). There are numerous strategies for controlling and managing desertification, but their effective implementation requires planning coordination between relevant government agencies, research sectors, and executive units. However, the selection of the appropriate strategy depends on identifying the factors and assessing the status and severity of desertification in each region (Memarian & Akbari, 2020b; Mofaei et al., 2021; Sarbazi et al., 2022; Akbari et al., 2024). Therefore, accurate assessment of the desertification status and trend using related indices, along with a more detailed evaluation of their significance, and proper prioritization using multi-criteria decision-making models, is an effective tool for implementing proper management strategies (Jazi et al., 2018). One of these model is the DPSIR approach, which includes five components: driving forces, pressures, state, impacts, and responses. Each of these components is continuously related the others. This model has been comprehensively endorsed by the European Environment Agency and not only considers environmental impacts but also the socioeconomic effects resulting from ecosystem changes. Experts and policymakers use the output data from this framework to develop potential responses (Shao et al., 2014; Karaskosa, 2018; Soleimanpour, 2019; Elliott, 2011; Karimi Sangchini et al., 2022; Tavakolnia et al., 2018; Mahdikarbalai, 2016).

Soltani et al. (2021) identified the factors influencing dust generation in the Hendijan County using the DPSIR approach and presented management strategies using expert

questionnaires, Likert scale, and Friedman Their research concluded population growth, agricultural activities, livestock and industrial development, and climate change were the primary driving forces in the region. Amin Fank et al. (2022) found that factors related to the crisis in the Urmia Lake watershed were categorized into 45 different indices, among which climate change (as a driver for the Urmia Lake crisis), inappropriate policies, and weak water management (as pressures on the spread of the crisis) had the highest priority. The study also revealed that the most significant responses to the Urmia Lake crisis and its sustainable management included forming organizations, implementing new groundwater balancing programs, enhancing capacity of non-governmental the organizations, enforcing water protection laws, and increasing promotional and educational activities for farmers in water conservation.

Malek Mohammadi et al. (2021), in their study of the prioritization of factors affecting rangeland degradation in Shahrud County, using the DPSIR conceptual model, showed that the primary driving force was the need for employment and food, directly causing pressure factors such as economic problems in local communities, increased erosion, and reduced rangeland areas. The ecosystem services affected by these conditions include provisioning (fodder and water production with a score of 0.7), regulating (soil conservation with a score of 0.63), and cultural (landscape beauty with a score of 0.5). Soleimani Sardoo et al. (2021)demonstrated that the DPSIR causal and the system dynamics framework approach were effective in evaluating and simulating various policies in the study area. Additionally, in the "business-as-usual" scenario, the water sufficiency ratio for agriculture decreased from 0.55 in 2006 to 0.2 by 2021, but in the "increase water supply" scenario, this ratio increased to 0.9 by 2021. The research by Sheikh et al. (2020) in the Hablehroud watershed revealed that "land planning and management" strategies were prioritized in all decision-making approaches. "Preparing and developing comprehensive watershed and water resources management programs," "preparing and developing land use planning at various scales," and "identifying and educating new alternative occupations" were ranked first to third, respectively. Thus, for better watershed management and achieving sustainable development, more attention should be given to land planning and management strategies. Soleimanpour et al. (2023) examined the risks of land subsidence in the Seydan-Farouq, Marvdasht plain in Fars Province using the DPSIR framework. The findings indicated that in this plain, driving forces such as agricultural population growth, horticultural and industrial development, and climate change had created pressures on the watershed resources. The main pressures included "over-extraction from the groundwater table for agriculture" "failure to respect the environmental water rights of the aguifer," which contributed to the unsustainable lowering of the water table. This situation resulted in adverse impacts such as "land and aquifer degradation." Key management responses suggested for improving the situation were "increasing irrigation efficiency" and "changing crop patterns." Ningal et al. (2008) applied the DPSIR model in the "Mirobe" region and identified land use as the primary factor influencing the area. With the projected population increase, land cover changed, leading to higher groundwater usage, which accelerated and exacerbated land subsidence. The study by Dzonga et al. (2020) indicated that the main drivers of desertification in the Ngomeni and Kipini fishing regions on Kenya's northern coast were the high population growth rate (3.7%) and the heavy dependence on natural resources (74%). The study by Navid Ahmad and Schneider (2020) showed that the DPSIR study provided an overall perspective on the multiple pressures and status changes in the Mekong River region in Vietnam, along with potential responses for forming systematic and sustainable approaches to reduce and adapt to the effects of widespread river sand and gravel extraction. Ku et al. (2020)

demonstrated the influence of land use demand in the urban developement and land use policy, which showed an increasing trend. The findings suggested that land use policies should consider the complexity of urban land expansion in urban land management. Overall, the framework, methods, and findings of this study could contribute to improving the effectiveness of land use policies, not only in China but also in other developing countries. The study by Duan et al. (2021) in the Chaohu watershed in China showed that the water quality in the watershed decreased with the socio-economic development and associated pressures, and the main response strategy was to reduce the pressure from socio-economic development on water quality in the watershed. The method proposed in this study improves the understanding of the impact of watershed management performance and provides solutions for future management actions.

This research was conducted with the aim of identifying and prioritizing the main drivers and pressures affecting desertification in the study area, as well as determining and prioritizing appropriate management responses to control or mitigate desertification and its adverse effects.

Materials and Methods Study Area

Ivanki, located in the westernmost region of Semnan Province, has earned the nickname "the province's forehead." This city, with a population of 12,462 (according to the 2022 census), is situated 55 kilometers east of Tehran. Geographically, Ivanki is located at a longitude of 52°06'31" East and a latitude of 35°34'53" North. It experiences a cold and dry winter climate, in contrast to its very hot summers. Ivanki is situated at an approximate altitude of 1,200 meters above sea level and covers an area of 826 square kilometers (8.7% of the total area of Garmsar). The city comprises 11 villages, with the villages of Chahdab. Cheshmeh Nadi. Ahmadabad, and Hosseinabad being included in this study.

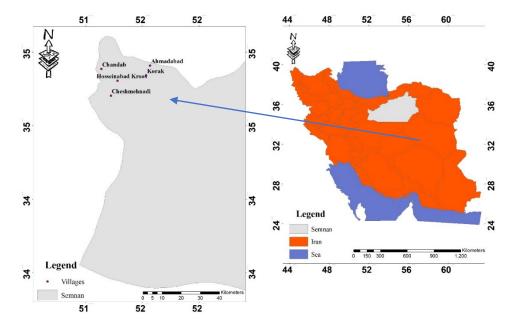
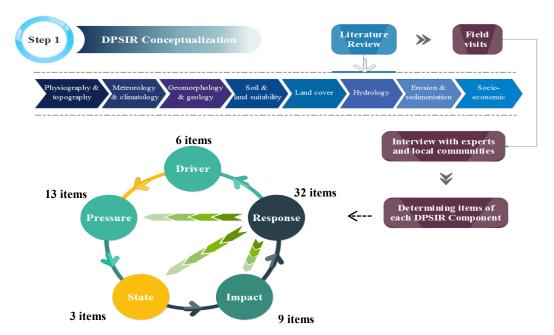


Figure 1. Location map of the study area

Methodology


In this study, the initial phase involved structuring the topic by examining the causeand-effect relationships between the elements of the DPSIR model. This model follows a logical sequence, beginning with identifying the current status (including environmental issues and challenges). Then, by analyzing the direct (pressures) and indirect (driving forces) factors contributing to the adverse state, cause-and-effect relationships are illustrate the created. To different components of DPSIR (Table 1), a multistage approach was adopted (Figure 2). This included reports from different organisations (hydrology, climate, phsiography, soil and lands cover, erosion, socio-economic), examining environmental issues, conducting

site visits, and interviewing experts in various such natural as resources. environmental management, regional water, and agricultural organisation, as well as academic faculty members, local community representatives, and other knowledgeable regarding stakeholders the area. Participatory Rural Appraisal (PRA) was conducted to refine and complete the components of DPSIR, focusing on key issues in the region. Subsequently, the viewpoints of the residents were discussed and compiled during the final working group session. The working group consisted of 26 experts with over a decade of experience and a comprehensive understanding of the region's challenges (Figure 2).

 Table 1. Indicators of the five components of the DPSIR

Response (R)	Response (R)	Impact (I)	Status(S)	Pressure (P)	Driving Force (D)
Monitoring mining activities in the region (R20) Implementation of watershed management and groundwater conservation operations (R21) Insurance services for damages (R22) Support packages for damage compensation (R23) Design of drought monitoring and early warning systems (R24)	Revision of Population Growth Policies in Land Use Planning (R1) Reform of land tenure laws (R2) Revision of self-sufficiency policies in agricultural and horticultural products (R3) Revision of self-sufficiency policies in livestock production (R4) Review of industrial development policies in the region (R5)	Increased production costs (I1) Damage to land and infrastructur e (I2) Decreased food security (I3) Reduced forage production	Increased Erosion (S1) Susceptibi lity Decreased Soil Fertility (S2) Land Subsidenc e (S3)	Extreme Temperatur e Variations (p1) Reduced Precipitatio n (P2) Changes in Precipitatio n Timing Distribution (P3)	Climate Change (D1) Population Growth (D2) Land Affairs Laws (D3) Self- sufficiency in Agricultural

Response (R)	Response (R)	Impact (I)	Status(S)	Pressure (P)	Driving Force (D)
Identification and Planting of	Awareness-raising to reduce risks	and grazing		Wildfires	Products
Species Resistant to	(R6)	capacity		(P4)	(D4)
Temperature Changes and	Design of early warning and fire	(I4)		Shrub	Self-
Suitable for the Region (R25)	extinguishing systems (R7)	Decreased		Cutting (P5)	sufficiency
Implementation of rangeland	Improvement of living standards	income for		Excessive	in Animal
management programs (R26)	for residents, both economically	local		Livestock	Products
Development of rainwater	and socially (R8)	residents		(P6)	(D5)
harvesting systems (R27)	Revision of grazing permits (R9)	(I5)		Improper	Industrial
Sediment removal operations	Job creation and alternative	Reduced		Land Use	Developme
in dams (R28)	livelihoods (R10)	lifespan of		Change (P7)	nt (D6)
Formation of NGOs Based on	Strengthening the natural	downstream		Uncontrolle	, ,
Integrated Watershed	resources protection units (R11)	dams (I6)		d Expansion	
Management Plans,	Ecological capacity assessment	Increased		of Orchards	
Programs, and Objectives	and incorporating it into land use	migration		in Sloped	
(R29)	planning (R12)	from rural		Lands (P8)	
Establishment of a	Water and soil conservation	areas to		Plowing	
coordination committee for	activities (R13)	cities (I7)		Along the	
integrated watershed	Agricultural education and	Lower		Slope (P9)	
management (watershed	promotion (R14)	success of		Cultivation	
council) (R30)	Development of volumetric	water and		in Sloped	
Prioritizing and addressing	controls in the region (R15)	soil		Lands	
factors affecting public	Increasing productivity in	conservatio		without	
participation in implementing	agricultural production (R16)	n projects		Agricultural	
rangeland management,	Adaptation to water scarcity	(I8)		Potential	
desertification control, and	(improvement of irrigation	Loss of		(P10)	
watershed management	patterns, crop patterns, and water	biodiversity		Over-	
programs (R31)	consumption patterns) (R17)	(I9)		extraction	
Implementation of All	Increasing the Supervision Unit			of	
Natural Resource Projects in	for Proper Groundwater			Groundwate	
the Framework of Integrated	Extraction (R18)			r (P11)	
Watershed Management	Revision and allocation of			Neglecting	
Programs (R32)	environmental water rights (R19)			Environmen	
				tal Water	
				Rights of	
				the Aquifer	
				(P12) Uncontrolle	
				d Mining Activities	
				(P13)	
				(113)	

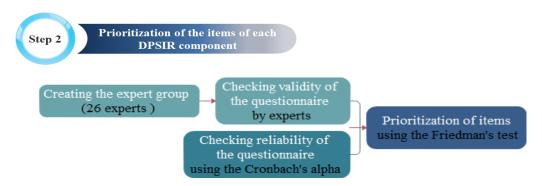


Figure 2. The study flowchart for structuring the DPSIR framework and prioritization of different items of each DPSIR component

A matrix was designed to document the existing driving forces, pressures, status, impacts, and corresponding management responses. This matrix helps decision-makers visually understand the complex interactions in the DPSIR model. To assess the importance of each categorized indicator, a Likert scale questionnaire was used, with a ranking from 1 (very low) to 5 (very high) for the importance of each indicator. The validity of the questionnaire was confirmed by experts. reliability For assessment, Cronbach's alpha method with a threshold of was used, indicating consistency (Equation 1) (Mansourfar, 2006).

Equation (1):
$$\alpha = \frac{k}{k-1} \left(1 - \frac{\sum_{i=1}^{k} S_i^2}{S_i^2} \right)$$

K, The number of items

 S_i^2 , The variance of the scores for item number i

 S_t^2 'The variance of the total scores for each respondent (the total variance of the items)

The Friedman test in SPSS software was used to rank the indicators within each group based on their importance (Equation 2). A significance level smaller than 0.01 or 0.05 indicates differing priorities among the indicators. Finally, the Friedman test was applied for hierarchical analysis of the importance of indicators for each component through ranking and comparing the averages.

quation (2):

$$\chi^{2} = \frac{12}{Nk(k+1)} \sum_{j=1}^{k} R_{j}^{2} - 3N(k+1)$$

In this relation:

Where:

K is the number of columns or questions,

N is the number of rows,

Rj is the sum of the ranks in column j.

In this case, the degrees of freedom are calculated as k-1 (Mansourfar, 2006).

Results and Discussion

Validity and Reliability of the Questionnaire: The validity of the indicators was confirmedby experts, and to assess reliability, Cronbach's alpha coefficient was calculated. The Cronbach's alpha for the questionnaire completed by the experts was 0.87. These results indicate that the questionnaire has satisfactory levels of validity and reliability. In Tables 2 and 3, the rankings of the driving forces and pressures based on the experts' views are presented.

The most important driving force in the region, according to experts, is population growth (D2) (4.96), while the least important is industrial development (D6) (2.46). The most significant pressure, according to experts, is improper land use change (P7) (10.25), and the least significant is wildfire (P4) (3.08) (table 2).

Table 2. Ranking of Driving Forces from the Experts' Perspective

Priority	Indicator	Mean	Sample	Chi-	Degrees of	Significance
		Rank	Size	Square	Freedom	Level
1	Population Growth (D2)	4.96	26	927.82	12	0.000
2	Self-sufficiency in Agricultural	4.72				
2	and Horticultural Products (D4)	4.72				
3	Self-sufficiency in Animal	4.20				
	Production (D5)	4.20				
4	Land Affairs Laws (D3)	3.21				
5	Climate Change (D1)	2.89				
6	Industrial Development (D6)	2.46				

Table 3. Ranking of Pressure Factors from the Experts' Perspective

Priority	Indicator	Mean Rank	Sample Size	Chi- Square	Degrees of Freedom	Significance Level
1	Improper Land Use Change (P7)	10.25	26	654.32	5	0.000
2	Excessive Livestock (P6)	9.43				
3	Over-extraction of Groundwater (P11)	9.12				
4	Uncontrolled Expansion of Orchards in Sloped Lands (P8)	8.74				
5	Shrub Cutting (P5)	7.82				
6	Cultivation in Sloped Lands without Agricultural Potential (P10)	7.69				
7	Uncontrolled Mining Activities (P13)	5.28				
8	Neglecting Environmental Water Rights of the Aquifer (P12)	4.86				
9	Plowing Along the Slope (P9)	4.45				
10	Reduced Precipitation (P2)	3.79				
11	Changes in Precipitation Timing Distribution (P3)	3.26				
12	Extreme Temperature Variations (P1)	3.14				
13	Wildfires (P4)	3.08				

Expert Responses Using Friedman Test in Villages of Garmsar County

The results of the analysis of Likert-scale questionnaires by 26 experts and the use of Friedman test to prioritize the indicators and determine their relative importance regarding community participation in watershed management projects are presented in Table 4. The mean rank values vary from 22.43 to 9.73. Furthermore, the significance level in the Friedman test is less than 0.00 (Sig = 0),

indicating a significant difference in the relative importance of the indicators in the response component.

From the experts' perspective, the indicator "Revision of Population Growth Policies in Land Use Planning (R1)" has the highest relative priority with a mean rank of 22.43, while the indicator "Sediment removal operations in dams (R28)" has the lowest relative priority with a mean rank of 9.73.

Table 4. Ranking of Effective Responses for Desertification Control from Experts' Perspective

Priority	Indicator	Average Rank	Sample Size	Chi- Square	Degrees of Freedom	Significanc e Level
1	Revision of Population Growth Policies in Land Use Planning (R1)	22.43	26	325.632	31	0.000
2	Revision of Self-Sufficiency Policies in Agricultural and Horticultural Products (R3)	21.20				
3	Ecological capacity assessment and incorporating it into land use planning (R12)	21.00				
4	Implementation of All Natural Resource Projects in the Framework of Integrated Watershed Management Programs (R32)	20.47				
5	Revision of self-sufficiency policies in livestock production (R4)	19.77				
6	Revision of grazing permits (R9)	19.57				
7	Reform of land tenure laws (R2)	18.90				
8	Job Creation and Alternative Livelihoods (R10)	18.83				
9	Rangeland Management Projects in the Region (R26)	18.57				
10	Increasing the Supervision Unit for Proper Groundwater Extraction (R18)	18.40				
11	Resources Protection Units (R11)	17.53				
12	Implementation of watershed management and groundwater conservation operations (R21)	17.40				
13	Water and soil conservation activities (R13)	17.37				
14	Improvement of living standards for residents, both economically and socially (R8)	17.20				
15	Establishment of a coordination committee for integrated watershed management (watershed council) (R30)	17.03				
16	Awareness-raising to reduce risks (R6)	16.73				
17	Design of drought monitoring and early warning systems (R24)	16.50				
18	Development of rainwater harvesting systems (R27)	15.43				
19	Increasing productivity in agricultural production (R16)	15.40				

Priority	Indicator	Average Rank	Sample Size	Chi- Square	Degrees of Freedom	Significanc e Level
20	Adaptation to water scarcity (improvement of irrigation patterns, crop patterns, and water consumption patterns) (R17)	15.37				
21	Formation of NGOs Based on Integrated Watershed Management Plans, Programs, and Objectives (R29)	15.23				
22	Revision and allocation of environmental water rights (R19)	15.17				
23	Development of volumetric controls in the region (R15)	15.03				
24	Prioritizing and addressing factors affecting public participation in implementing rangeland management, desertification control, and watershed management programs (R31)	14.90				
25	Review of industrial development policies in the region (R5)	14.90				
26	Agricultural education and promotion (R14)	14.57				
27	Identification and Planting of Species Resistant to Temperature Changes and Suitable for the Region (R25)	14.27				
28	Monitoring proper mining activities in the region (R20)	13.47				
29	Design of early warning and fire extinguishing systems (R7)	12.80				
30	Support packages for damage compensation (R23)	12.27				
31	Insurance services for damages (R22)	10.57				
32	Sediment removal operations in dams (R28)	9.73				

Desertification is a multifaceted process influenced by various human and natural factors. These factors interact with each other, exacerbating the progression of desertification. Understanding these factors and their impacts on the region is crucial for implementing effective strategies to combat desertification and prevent its further advancement. This study aimed to identify and prioritize the causes of desertification and strategies for its mitigation using the DPSIR framework in five villages of Garmsar County.

According to experts, the most decisive indicator (response) for controlling desertification is Revision of Population Growth Policies in Land Use Planning (R1) (22.43). This is because population growth leads to increased exploitation of land. Changes in land use are the most significant effect of population growth in the region, which, in turn, leads to changes in land cover and increased extraction of groundwater resources, accelerating and intensifying land subsidence. Furthermore, population growth results in pressures such as overgrazing and

associated negative consequences (Salehpourjam et al., 2021b; Akbari et al., 2024)). The findings of Ningal et al. (2008) in Guinea, Akbari et al. (2020a), and Salehpourjam et al. (2021) also confirm that population growth leads to significant changes in land use, agricultural land expansion, and the destruction of natural environments. In fact, responses refer to policies and programs that can implemented to control the driving forces, pressures, or their effects. These responses can help improve the system's state (Sarbazi et al., 2022; Memarian & Akbari, 2020b; Talebanfard et al., 2022). In other words, responses are corrective measures for the situation and the related effects, as well as mitigation or adjustment measures for driving forces and pressures, which are provided for all components of the DPSIR approach. In the research by Borji et al. (2018), the ranking of response component statements based on the Friedman test revealed significant differences the statements within the DPSIR Integrated framework. watershed management and the establishment and strengthening of support funds were ranked first and twenty-sixth in importance from the perspective. In contrast, experts' integrated watershed management approach, assessing ecological capacity, land use planning, and developing an appropriate comprehensive model for watershed management were the top three priorities. However, in this study, experts identified revising population growth policies in land use planning as the most decisive response to control desertification.

The experts in this study introduced various executive policies to control desertification. The proposed response policies included increasing irrigation efficiency, changing crop patterns, watershed operations, controlling legal well extraction, blocking illegal wells, point recharge of water, and cultural actions in the plains.

The ranking of driving forces, according to experts, prioritized population growth (D2) (4.96), Self-sufficiency in Agricultural and Horticultural Products (D4) (4.72), Self-sufficiency in Animal Production (D5) (4.20), Land Affairs Laws (D3) (3.21), Climate

Change (D1) (2.89),and Industrial Development (D6) (2.46). It should be noted that controlling driving forces is not always feasible, as population growth is one of the national policies, and climate change is a global issue beyond managerial control. Therefore, the expansion of agricultural, horticultural, and industrial lands, i.e., changes in land use, is inevitable and will ultimately strengthen the driving forces. In the study by Mosaferi et al. (2019), four factors (climate change, population growth, management structure, and laws) were identified as the main driving forces in the DPSIR framework based on expert opinions and the review of resources and data. The ranking of driving force statements showed significant differences in the DPSIR framework, where management structure and climate change were ranked first and fourth in importance from the experts' perspective, with climate change being a key driver. consistent with the findings of this research. In the present study, population growth ranked first in the driving forces ranking, while industrial development ranked last.

Additionally, the ranking of pressures according to experts included, in order of priority, Improper Land Use Change (P7) (10.25), Excessive Livestock (P6) (9.43), Over-extraction of Groundwater (P11) (9.12). Uncontrolled Expansion of Orchards in Sloped Lands (P8) (8.74), Shrub Cutting (P5) (7.82), Cultivation in Sloped Lands without Agricultural Potential (P10) (7.69),Uncontrolled Mining Activities (P13) (5.28), Neglecting Environmental Water Rights of the Aguifer (P12) (4.86), Plowing Along the Slope (P9) (4.45), Reduced Precipitation (P2) (3.79), Changes in Precipitation Timing Distribution (P3) (3.26),Extreme Temperature Variations (P1) (3.14), and Wildfires (P4) (3.08). Agricultural activities, in addition to the overexploitation of water resources, have led to excessive use of agricultural inputs. Inadequate management structures and ineffective laws have created pressures such as sectoral thinking and parallel work. In the study by Borji et al. (2018), the ranking of pressure component statements also revealed significant differences in the DPSIR framework, with

sectoral thinking and neglecting sustainability of resources being ranked first and twenty-second in importance, and the expansion of unsustainable agriculture and overexploitation of water resources being the top three priorities. This is aligned with the findings of the current study. Mosaferi et al. (2019) also emphasized the importance of forming a unified and powerful organization and creating watershed councils for proper watershed management. Sheikh et al. (2020), in the Hablehroud watershed, considered land management and planning strategies such as developing integrated watershed and water resource management programs, creating land use planning programs at various scales, and identifying and training new and alternative occupations as the most important revitalization strategies for watersheds, which closely align with the findings of this study.

Although identifying and prioritizing the various components of the DPSIR framework plays an important role in planning to improve watershed health (Karimi Sangchini et al. 2022), assessing the trends in changes in its components also plays an important role in good watershed management (Mosaffaie et al. 2021). Therefore, assessing the trends in **DPSIR** components changes in recommended for future studies. Also, comprehensiveness examining the management actions and responses improve watershed health is one of the functions of the DPSIR framework (Salehpour Jam et al. 2022), which can be

considered for the purpose of evaluating projects in future studies.

Conclusion

Overall, this research demonstrates that the a suitable DPSIR approach provides intellectual infrastructure for integrated watershed management by generating corrective responses for each of its structural components. Furthermore, it serves as a key entry point for developing executive watershed plans, which can be structured around the strategic headings derived from its own response framework. Therefore, creating a watershed action plan with the participation and approval of all stakeholders is a fundamental step. To improve watershed management, it is recommended to reform the current organizational structure, assess trends environmental changes, establish watershed councils, promote participatory governance, and involve all stakeholders in the policy-making process.

Acknowledgement

This research was conducted without any external funding.

Data availability statement

All relevant data are included within this article.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Akbari, M., Memarian, H., Neamatollahi, E., Jafari Shalamzari, M., Alizadeh Noughani, M., and Zakeri, D. 2020a. Prioritizing Policies and Strategies for Desertification Risk Management Using MCDM–DPSIR Approach in Northeastern Iran. Environment Development and Sustainability. 23, 2503-2523.

Akbari, M., Jafari Shalamzari, M., Memarian, H., and Gholami, A. 2020b. Monitoring Desertification Processes Using Ecological Indicators and Providing Management Programs in Arid Regions of Iran. Ecological Indicators. 111, 106011.

Akbari, M., Sarbazi, M., Sibeveic, A., Fadaied, S. 2024. Desertification Risk Assessment and Providing Management Strategies using the DPSIR-M Model in Khorasan Razavi province. Scientific Journal of Geography and Environmental Hazards. 13 (2): 210-239.

Ali Shai, A., Jahani, D., and Haghi, Y. 2023. Explaining the crime susceptibility of Mehr housing complexes and the role of spatial design in crime prevention and enhancing security with the CPTED approach (Case study: Mehr housing complexes of Zanjan city). Geography and Urban Space Development. 12 (2), 19-36. (In Persian)

- Amin Fank, D., Rezaei, R.A., and Zeynali Zadeh, K. 2022. Analysis of the crisis status of the Urmia Lake watershed and proposing solutions for its sustainable management: Application of the DPSIR model. Iranian Journal of Agricultural Extension and Education Sciences. 17(2), 29-45. (In Persian)
- Carrascosa, I. P. 2018. Large Group Decision Making: Creating Decision Support Approaches at Scale. Springer International Publishing. 14 pp.
- Duan, T., Feng, J., Zhou, Y., Chang, X., and Li, Y. 2021. Systematic evaluation of management measure effects on the water environment based on the DPSIR-Tapio decoupling model: A case study in the Chaohu Lake watershed, China. Science of the Total Environment. 801, 149528.
- Dzoga, M., Simatele, D. M., Munga, C., and Yonge, S. 2020. Application of the DPSIR framework to coastal and marine fisheries management in Kenya. Ocean Science Journal. 55, 193-201.
- Elliott, M. 2011. Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures a numbered guide. Marine Pollution Bulletin. 62, 651–655.
- Gari, S.R., Guerrero, C. E. O., Uribe, B., Icely, J.D., and Newton, A. 2018. A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council. Water Science. 32, 318–337.
- Jazi, H., Karkehabadi, Z., and Kamyabi, S. 2018. Sustainable development strategies in upper basin watershed cities, case study: Garmsar City. Watershed Engineering and Management. 9 (4), 426-440. (In Persian)
- Kamali, M., Azarniyvand, H., Melikian, A., and Mosaferi, J. 2023. Proposing management solutions for the Alwolk Watershed in Qazvin Province based on the DPSIR approach. Watershed Management Journal. 14 (28), 162-148. (In Persian)
- Karbalaei, M. 2016. Investigating urban management solutions for reducing the impacts of natural disasters (floods and earthquakes) based on the DPSIR assessment model (Case study: Tehran). Master's thesis, Islamic Azad University.
- Karimi Sangchini, E., Salehpour Jam, A., Mosaffaie, J., and Payamani, K. 2021. Evaluating the solutions for flood risk management in Khorram Abad watershed using DPSIR framework. Final Project Report, Soil Conservation and Watershed Management Research institute, Tehran, 78 pp. (In Persian)
- Karimi Sangchini, E., Salehpour Jam, A. and Mosaffaie, J., 2022. Flood risk management in Khorramabad watershed using the DPSIR framework. Natural Hazards, 114 (3), 3101-3121.
- Malekmohammadi, J., Azimi, M.A., Barani, H., and Yeganeh, H. 2021. Investigation and prioritization of factors affecting the degradation of winter pastures using the DPSIR conceptual model: Case study of Shahrud County, Semnan Province. Biodiversity and Ecosystem Protection. 9 (18), 173-191. (In Persian)
- Memarian, H., and Akbari, M. 2021. Prediction of Combined Effect of Climate and Land Use Changes on Soil Erosion in Iran Using GloSEM Data. Iranian Journal of Ecohydrology. 8 (2), 513-534. (In Persian)
- Mosaffaie, J., Salehpour Jam, A., Tabatabaei, M.R, and Kousari, M.R. 2021. Trend assessment of the watershed health based on DPSIR framework. Land Use Policy. 100, 104911.
- Naveedh Ahmed, S., and Schneider, P. 2020. A dpsir assessment on ecosystem services challenges in the Mekong delta, Vietnam: Coping with the impacts of sand mining. Sustainability. 12 (22), 1-29.
- Ningal, T., Hartemink, A.E., and Bregt, A.K. 2008. Land use change and population growth in the Morobe Province of Papua New Guinea between 1975 and 2000. Journal of Environmental Management. 87 (1), 117-124.
- Qu, S., Hu, S., Li, W., Wang, H., Zhang, C., and Li, Q. 2020. Interaction between urban land expansion and land use policy: An analysis using the DPSIR framework. Land Use Policy. 99, 104856.

- Salehpour Jam, A., Mosaffaie, J. and Tabatabaei, M.R. 2022. Assessment of comprehensiveness of soil conservation measures using the DPSIR framework. Environmental Monitoring and Assessment, 193 (1), 42.
- Sarbazi, M., Ownegh, M., Mohammadian Behbahani, A., and Akbari, M. 2022. Quantitative Assessment of the Desertification Intensity and Risk: A Case Study of Sarakhs City. Desert Ecosystem Engineering. 10 (31), 15-30. (In Persian)
- Shao, C., Guan, Y., Chu, C., Shi, R., Ju, M., and Shi, J. 2014. Trends analysis of ecological environment security based on DPSIR model in the coastal zone: A survey study in Tianjin, China. International journal of Environment Research. 8(3), 765-778.
- Sheikh, W.B., Zarei Garizi, A., Alvandi, E., Asadi Naliwan, E., Khosravi, G.R., Saadeddin, A., and Unq, M. 2020. Participatory Site Selection for the Proposed Options in the Management of the Hable-Roud Basin. Watershed Management Research. 32 (4), 2-18. (In Persian)
- Soleimani Sardou, F., Vakili, F., and Rostami Khalej, M. 2021. Water Resources Management in the South of Kerman Province Using the System Dynamics Model. Iranian Journal of Watershed Sciences and Engineering. 15 (55), 11-21. (In Persian)
- Soleimanpour, S.M., Saleh pour Jam, A., Norouz, A.A., Khalili, N., and Keshavarz, H. 2019. Experts' Viewpoints on Prioritizing Factors Affecting Lack of Sustainable Participation of Rural Communities in Watershed Management Projects on the Moradabad Watershed, Meymand the Province of Fars. Watershed Management Research, 32 (3): 53-62. (In Persian)
- Soltani, M.J., Motamedoziri, B., Nooroozi, A.A., Ahmadi, H., and Mosaferi, J. 2021. Identifying and prioritizing the factors affecting the creation of dust in Hendijan City and providing management solutions by DPSIR framework. Watershed Engineering and Management. 13 (2), 269-282. (In Persian)
- Soleimanpour, M., Salehpourjam, A., Mosaferi, J., and Nooroozi, K. 2023. Land Subsidence Risk Management Solutions in Seydan-Farooq Plain of Fars Province with the Driving Force-Pressure-State-Impact-Response Approach. Watershed Management Research. 36 (1), 50-65. (In Persian)
- Talebanfard, A. A., Akbari, M., and Azami rad, M. 2022. Sensitivity Areas Assessment of Desertification Using ESAs Model and Prioritizing Management Strategies (Case study: Kavir-e- Namak Basin, Khorasan Razavi Province). Desert Management. 10(2), 1-20. (In Persian)
- Tavakolnia, J., Motakan, A., Sarafi, M., and Borbori, F. 2018. Assessment of the impacts of ecotourism in the Rudbar Qasran and Lavasanat region using the DPSIR model. Iranian Journal of Remote Sensing and GIS. 10 (1), 109-126. (In Persian)
- Wang, W., Sun, Y., and Wu, J. 2018. Environmental warning system based on the DPSIR model: A practical and concise method for environmental assessment. Sustainability. 10 (6), 1728.