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In this research, meteorological data from eleven stations were 

monitored to build a suitable model for predicting dew point values. 

Given the importance of dew point temperature in forecasting frosts, 

rainfall, and other meteorological applications, accurate prediction of 

this parameter is crucial. The stations included in the study are Bam, 

Birjand, Chabahar, Iranshahr, Kerman, Mashhad, Sabzevar, Tabas, 

Torbat Heydarieh, Zabul, and Zahedan, all located in dry climates. 

Initially, the correlation between various weather parameters and dew 

point was analyzed. Based on the highest correlation, three 

parameters—average, maximum, and minimum temperature—were 

selected as input variables for the model. CARMA and VAR models 

were used for analysis, and the stability of the residuals from both 

models was calculated. The series were then developed using the 

GARCH model. As a result, dew point modeling for the eleven 

meteorological stations was achieved with the CARMA-GARCH and 

VAR-GARCH models. Our findings show that the VAR-GARCH 

model outperformed the CARMA-GARCH model in both training and 

testing phases, making it the best model for this research. One key 

factor in the VAR-GARCH model’s superior performance is its 

enhanced memory for processing time series data. The definitive result 

indicates that developing the residuals using the GARCH model 

improves the accuracy of both primary models by 6% to 30% in the 

testing phase. 
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Introduction 

Dew point is a weather phenomenon that is 

known for its importance in the balance of 

water in dry and semi-dry areas. The dew 

point denotes the atmospheric temperature 

at which the air contains the maximum 

amount of moisture. The dew point and the 

ability to detect its presence have a broad 

scope of practical uses in various sciences, 

engineering, and meteorology. When the 

temperature reaches the dew point at a 

given pressure, the rate for water 

evaporation in liquid form and the rate for 

its vapor condensation become equal. As 

per the report by Aguirre-Gutiérrez and 

collaborators (2019), dew can contribute up 

to 2.10 of the yearly water influx and 6.33 

of the complete dry season precipitation in 

a semi-dry continental prairies. (Aguirre-

Gutiérrez et al., 2019). Maestre Valero et al. 

(2015) investigated the use of dew 

collectors as a novel approach to harnessing 

atmospheric moisture as a viable water 

resource (Maestre-Valero, Martin-Gorriz, & 

Martínez-Alvarez, 2015). Tomaszkiewicz 

and colleagues (2017) also demonstrated 

that dew harvesting can substantially 

enhance soil humidity levels, and can be 

used for afforestation and crop growth in 

dry and semi-arid environments 

(Tomaszkiewicz, Abou Najm, Zurayk, & 

El-Fadel, 2017), which demonstrates one of 

the important applications of dew. Zhang 

and colleagues (2015) and Zhang and 

colleagues (2019) emphasized the 

importance of dew as a water source, 

particularly due to its limited yet valuable 

contribution compared to traditional water 

sources, such as irrigation and rainfall 

(Yokoyama et al., 2021; Zhang et al., 2015; 

Zhang, Wang, Yue, & Wang, 2019). 

Studies show that the Vector 

Autoregressive Generalized Conditional 

Heteroskedasticity (VAR-GARCH) model, 

if appropriately modified, can improve the 

accuracy of time series and ensure 

conditional heteroskedasticity stability. 

VAR-GARCH combination models are 

more accurate than vector models. The 

VAR model is a highly effective and 

adaptable framework for examining 

multivariate type of time series. The model 

represents a natural extension of the 

univariate autoregressive model for 

multivariate type of time series. The Vector 

Autoregressive (VAR) model was 

originally devised to capture and forecast 

complex fluctuations inherent in time series 

of financial and economic nature. The 

model frequently yields more accurate 

forecasts than those obtained from using 

simple and precise models for time series. 

VAR model forecasting capabilities are 

completely adaptable, as they can be 

conditioned on future paths of specified 

hypothetical variables. The model, beyond 

its descriptive and predictive capabilities, is 

employed for structural inference and 

policy evaluation as well. In the context of 

structural analysis, researchers impose 

explicit assumptions on the underlying data 

structure, and subsequently, the 

repercussions of unforeseen disturbances or 

innovations on designated variables are 
distilled into a concise summary. The 

effects are typically encapsulated by 

impulse response functions along with 

variance decomposition of forecast errors. 

The model concentrates on examining 

multivariate covariances that are constant 

over time. VAR models were introduced in 

economics by Sims (1980) (Sims, 1980). A 
comprehensive  technical examination of 

VAR models is presented in the research of 

Luthekpohl (1991), while more recent 

reviews of VAR methodologies can be 

found in the research of Watson (1994), 

Lütkephol (2001), and Waggoner and Zha 

(1999) (LUTHEKPOHL, 1991; Lütkepohl, 

2001; Waggoner & Zha, 1999; Watson, 

1994).  

The use of VAR models in financial data 

is discussed in the works Hamilton (1994), 

Campbell et al. (1997), Culbertson (1996), 

Mills (1999) and Tsay (2001) (Campbell, 

Lo, MacKinlay, & Whitelaw, 1998; 

Cuthbertson & Nitzsche, 2005; Hamilton, 

2020; Mills & Markellos, 2008; Tsay, 

2005). So far, many researches have been 

conducted in the field of modeling and 

forecasting weather parameters. Each of 

these studies has considered different 

perspectives. In studies conducted in 

different parts of the world, different 

methods have been used to study dew point 

temperature and different results have been 
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obtained (Aguirre-Gutiérrez et al., 2019; 

Baguskas, King, Fischer, D’Antonio, & 

Still, 2016; Lin et al., 2021; Tomaszkiewicz 

et al., 2017). 

In the study by Shahidi, et al. (2020), the 

efficiency of a VAR model was 

investigated on a yearly basis utilizing 

evaporation dataset from the Iranian Salt 

Lake basin, spanning the statistical period 

of 1996 to 2015. The findings revealed that 

VAR and VAR-GARCH models both 

exhibited exceptional precision and 

correlation, with the model evaluation 

metrics corroborating this conclusion.The 

annual pan evaporation model leveraging 

the VAR-GARCH model demonstrated a 

notable enhancement of approximately 4% 

in its outcomes, surpassing the performance 

of the VAR model. Notwithstanding, the 

incorporation of a random intercept and the 

subsequent reduction in the model 

uncertainty, enabled the VAR-GARCH 

model to outperform the VAR model in 

estimating pan evaporation values, yielding 

more accurate results. However, owing to 

the computational intensity inherent in the 

GARCH model, the simpler VAR model 

can serve as a viable alternative (Shahidi, 

Ramezani, Nazeri-Tahroudi, & 

Mohammadi, 2020). 

Ramezani et al. (2023) applied Copula-

based and ARCH-based models to predict 

storms. This study employed VAR-

GARCH, copula, and Copula-GARCH 

models to investigate the concurrent 

occurrence of storms in the Aras River 

basin, situated in northwestern Iran, across 

a 20-year span from 1998 to 2018. Based 

on the results, the VAR-GARCH model 

was more accurate than the Copula and 

Copula-GARCH models. The superior 
performance of the VAR-GARCH model in 

the process of simulations can be attributed 

to its ability to incorporate multiple lags 

and effectively model the variance 

attributed to the residual series. Notably, 

possessing real-time knowledge about the 

current storm enables the development of 

highly accurate predictions regarding the 

subsequent storm event. The application of 

this approach can be highly beneficial in 

effective flood management, as the 

resulting curves can be utilized to establish 

a reliable flood warning system for the 

basin (Ramezani, Nazeri Tahroudi, De 

Michele, & Mirabbasi, 2023). 

In dry and semi-dry areas, non-

precipitation water, which mainly includes 

fog, dew, and adsorption of water vapor, 

plays an important role in local ecosystems. 

While individual components of non-

precipitation water have been the subject of 

separate investigations in the past, there has 

been a notable lack of research focused on 

the collective properties and 

interdependencies of these components. 

Notably, a scarcity of research has explored 

the formation and transformation of non-

precipitation water components, and even 

fewer studies have investigated their impact 

on surface water balance and their influence 

on crop water demands in China. A novel 

approach for distinguishing the components 

of non-precipitation water was established 

by integrating lysimeter - based  

measurements and micrometeorological 

data collected from a station located  in the 

summer monsoon transition zone in China. 

Daily time series of non-precipitation water 

components were presented. Among the 

research that has been done in hydrology 

studies using time series, we can mention 

the creation of a univariate and bivariate 

model, or different artificial intelligence 

models, etc. Also, in various studies 

conducted in different parts of the world, 

different methods have been used to study 

dew point temperature and different results 

have been obtained. However, so far no 

research has been conducted on simulating 

and forecasting dew point temperature 

using ARMA (Autoregressive Moving-

Average) co-integration functions and 

vector models, as well as extended and 

hybrid models that consider anisotropy. 

This is because the effect of conditional 

variance has not been seen in multivariate 

simulations in various studies. The aim of 

this research is to simulate and predict dew 

point temperature in diverse climatic 

regions  of Iran employing combined time 

series functions. Combined time series are 

one of the newest methods for multivariate 

analysis of hydrologic phenomena. 

Analyzing dew point temperature using 

multivariate and co-integrated time series 
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functions can lead to valuable information 

in hydrologic applications. The main 

innovation of this research is also the use of 

time series functions and conditional 

variance combinations to evaluate different 

input patterns to the simulation model. By 

employing these models, it is possible to 

provide the best prediction and simulation 

pattern of dew point temperature values in 

diverse climatic regions. This proposed 

approach will lead to the presentation of 

regional models for dew point prediction. 

Accurate prediction of dew point 

temperature is crucial in a range of 

scientific disciplines, including hydrology, 

agriculture, and climatology. This is 

because many important parameters are 

involved in determining and calculating 

dew point temperature, including 

temperature (minimum, maximum, 

average), actual and saturation vapor 

pressures, relative humidity, and average 

monthly rainfall. Therefore, determining 

this parameter using a smaller number of 

parameters that can be easily measured at 

weather stations will be very efficient. The 

objective of the present study is to examine 

the accuracy of the simultaneous and vector 

time series model in simulating and 

predicting dew point temperature using 

different input patterns. Also, due to the 

stochastic nature of the series under study, 

investigating and modeling the remaining 

part of the series will increase the 

performance of the models under study, for 

which hybrid models of the Autoregressive 

Conditional Heteroscedasticity (ARCH) 

family were used. 

 

Materials and Methods 

Case study 

The geographic scope of the study covers 

the provinces of South Khorasan, Razavi 

Khorasan, Kerman, and Sistan and 

Baluchestan. These provinces form the 

eastern part of Iran. In this study, dew point 

temperature values were modeled and 

predicted using weather data from 11 

stations in eastern Iran. The stations studied 

in this research are shown in Figure (1) 

including the cities of Bam, Birjand, 

Chabahar, Iranshahr, Kerman, Mashhad, 

Sabzevar, Tabas, Torbat Heydariyeh, Zabol, 

and Zahedan. 

 

 
Figure 1. The geographic location details for the weather stations included in the study 
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Examining the statistical period of 

synoptic stations across the country 

revealed that, although the number of 

stations is considerable, few have long-term 

data suitable for studying climate change. 

The stations with the desired long-term 

statistical characteristics are listed, along 

with their specifications. While data from 

some stations date back to 1951, the 

statistical period of 1983–2021 was selected 

to include more stations and eliminate data 

inhomogeneity from the early years of 

operation. 

 

Calculated Dew Point Values 
At Bam station, the highest dew point 

values occur from July 10 to August 10, 

while the lowest dew point values are 

recorded from December 10 to January 10. 

Similarly, at the stations of Birjand, 

Chabahar, Iranshahr, Kerman, Mashhad, 

Sabzevar, Tabas, and Torbat Heydarieh, the 

highest dew point temperatures are 

observed in July (July 10 to August 10). In 

contrast, at Zabol and Zahedan stations, the 

highest dew point temperatures occur later, 

from August 11 to September 12. 

The lowest dew point values at Bam, 

Birjand, Chabahar, Iranshahr, Kerman, 

Tabas, Torbat Heydarieh, Zabol, and 

Zahedan stations were recorded between 

November 10 and December 10. However, 

for Mashhad and Sabzevar stations, the 

lowest dew points occurred from January 

10 to February 10. All data were calculated 

for the period 1983 to 2021. The minimum 

and maximum dew point values for all 

stations are presented in Table 1. 
 

Table 1. Maximum and minimum dew point for the studied stations 

Station 
The average dew point 

temperature 

The maximum dew point 

temperature 

Bam 16 15.85 

Birjand 16 17.76 

Chabahar 26.4 36.95 

Iranshahr 25.8 23.83 

Kerman 15 17.03 

Mashhad 15.7 27.69 

Sabzevar 16.55 20.26 

Tabas 20 15.88 

Tprbat-e Heydarieh 20 22.10 

Zabol 20 19.89 

Zahedan 14.95 27.21 

 

First, the correlation of various data (such 

as evaporation and transpiration-sunshine 

hours, wind speed at 10 meters height, 

average humidity, maximum and minimum 

temperature and average temperature) with 

the mentioned parameter (dew point) was 

measured and then 3 parameters (maximum 

temperature, minimum temperature, average 

temperature) were selected as model inputs 

with the highest correlation coefficient. In this 

research, we first used Continuous 

Autoregressive Moving Average (CARMA) 

and VAR methods. Then the random series or 

the remaining series was developed with the 

ARCH model and CARMA-GARCH and 

VAR-GARCH models were produced. Dew 

point modeling was performed using these 4 

models and the results were finally analyzed 

and compared. The validation of the models 

and their efficiency were investigated in terms 

of RMSE and Nash-Sutcliffe criteria. 

In this research, CARMA, VAR, and 

combined CARMA-GARCH and VAR-

GARCH models are used for simulation and 

modeling of dew point temperature in various 

stations in eastern Iran. Also, maximum, 

minimum, and average temperature data are 

used on a monthly scale of the studied 

stations to form different inputs. 
 

Simultaneous ARAMA model 

The elements of the matrix for the 
autoregressive and moving average 

components are considered such that a 

multivariate model, separate and 

independent from the ARMA model, can be 

established. Therefore, instead of 

calculating the components of the model 
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simultaneously, they must be determined 

individually for each single-component 

ARMA site. This approach results in the 

identification of the best single-variable 

ARMA model for each site. If a full 

multivariate ARMA model is applied, 

rather than modeling a distinct temporal 

dependency structure for each site, a 

uniform temporal dependency structure can 

be assumed across all sites. 

The CARMA(p,q) model for nn sites is 

calculated according to the following 

equation: 

(1)  jt

q

j jt

p

i jtjt YY __ ∑∑
1

_
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 k

tY with a normal distribution and mean 
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matrix for the components of the moving 
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p21

,...,, model and the n*n 

diagonal matrix is the components of the 
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This model can preserve the zero lag cross-

correlation in different sites and locations. 

To calculate the components of the model, 

we consider N years of data for each site i 

with observational information, and Y
i

t

)(

and i=1,2,3,…,n, the general model matrix 

Yt, is defined as follows: 

(3) ZY tt
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the variables is obtained using the 

following equation: 
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The components of the CARMA(p(i),q(i)) 

model are specified similar to the 

components of the ARMA model. The 

remaining time series of this model does 

not have a time variable, and this parameter 

has been completely removed, but it is 

dependent in space. This interdependence is 

calculated using the following equation: 
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where ε
)i(

kt+  is the N-K mean of data j and 


)(i

t  is the N-K mean of data i. Finally, the 

matrix of the components of the 

CARMA(p,q) model is calculated by the 

method (Matalas, 1967): 

(10) �̂�1 = �̂�1�̂�0
_1

 

 

Vector Autoregressive (VAR) Model 

The vector autocorrelation model is a 

statistical technique employed to establish a 

linear relationship among several variables. 

It employs a self-correlated integrated 

model, where all the variations are 

incorporated simultaneously. Each value in 

the VAR model is explained by an equation 
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that takes into account its own variation as 

well as the variations from other models, 

along with an error term. Understanding the 

forces at play in VAR modeling requires a 

significant amount of knowledge, as there 

are no pre-existing structural models with 

the necessary equations. Despite this 

complexity, the VAR model is widely used 

in econometrics and efficiency estimations, 

and it has been economically validated. 

However, there have been no studies 

conducted on this subject in our country. If 

𝑌𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , . . . , 𝑦𝑛𝑡)
/ indicates the vector 

of time series variables (n×1), the VAR(p) 

model with a p-year basis can be expressed 

as follows: 

(11) 

𝜀𝑡 = 𝜎𝑡𝑧𝑡     𝑎𝑛𝑑     𝜎𝑡
2

= 𝑎0 + ∑𝑏𝑖𝜀𝑡−𝑖
2

𝑚

𝑖=1

 

 

The coefficient Πi represents the (n × n) 

element of the matrix, while εt represents 

the (n × 1) matrix consisting of independent 

white noise values with zero mean and a 

constant covariance matrix Σ. To illustrate, 

the equation of the VAR model with two 

variables can be expressed as follows: 

(12) 

(
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)

= (
𝑐1

𝑐2
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1
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2

𝜋22
2 )(
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𝑦2𝑡−2
) + (

𝜀1𝑡

𝜀2𝑡
) 

(13) 

𝑦1𝑡 = 𝑐1 + 𝜋11
1 𝑦1𝑡−1 + 𝜋12

1 𝑦2𝑡−1

+ 𝜋11
2 𝑦1𝑡−2

+ 𝜋12
2 𝑦2𝑡−2 + 𝜀1𝑡 

𝑦2𝑡 = 𝑐2 + 𝜋21
1 𝑦1𝑡−1 + 𝜋22

1 𝑦2𝑡−1

+ 𝜋21
2 𝑦1𝑡−1

+ 𝜋22
2 𝑦2𝑡−1 + 𝜀2𝑡 

The value 𝑐𝑜𝑣( 𝜀1𝑡, 𝜀2𝑡) = 𝜎12 is zero when 

t equals s, and for all other values of t, it is 

different from zero. It is important to 

highlight that each individual equation 

represents a regression of the residuals y1t 

and y2t, and therefore, the VAR (p) model 

can be seen as an indirect regression model 

with residual variables and deterministic 

terms, similar to usual regressions. From an 

end-user's standpoint, the VAR (p) model is 

expressed as relation (14): 

(14) 𝛱(𝐿)𝑌 = 𝑐 + 𝜀𝑡 

where 𝛱(𝐿) = 𝐼𝑛 − 𝛱1𝐿−. . . −𝛱1𝐿
𝑝. If the 

determinant (𝐼𝑛 − 𝛱1𝑧−. . . −𝛱𝑝𝑧𝑝) equals 

zero, the VAR(p) model will become 

stationary. In the case where the 

eigenvalues of the composite matrix have a 

modulus less than one, outside the complex 

unit loop (with a modulus greater than one), 

or equivalently, if the eigenvalues of the 

composite matrix have a modulus smaller 

than unity, it is presumed that the operation 

started at infinity in the distant past. 

Consequently, it is a stable VAR(p) process 

with constant mean variance and 

covariance. If Yt has a constant covariance 

in relation 1, then the mean can be 

expressed in the form of equation 16. 

(15) 

 

 

𝐹 = (

𝛱1

𝐼𝑛
0
0

𝛱2

0
.
0

. . . .

. . . .
0
𝐼𝑛

𝛱𝑛

0
:
0

) 

(16) 
 

𝜇 = (𝐼𝑛 − 𝛱1−. . . −𝛱𝑝)−1𝑐 

Following the normalized mean obtained 

from the VAR(p) model: 

(17) 

𝑌𝑡 − 𝜇 = 𝛱1(𝑌𝑡−1 − 𝜇) + 𝛱2(𝑌𝑡−2

− 𝜇)+. . . +𝛱𝑝(𝑌𝑡−𝑝

− 𝜇) + 𝜀𝑡 

The fundamental VAR(p) model might 

have certain limitations in capturing the 

underlying patterns and properties inherent 

in the data. Specifically, additional 

deterministic conditions like a linear time 

trend or seasonal variables could be used to 

accurately represent the data. Moreover, 

random variables might be necessary as 

well. The overall structure of the VAR(p) 

model with deterministic components  and 

external variables is outlined as follows: 

(18) 

𝑌𝑡

= 𝛱1𝑌𝑡−1 + 𝛱2𝑌𝑡−2+. . . +𝛱𝑝𝑌𝑡−𝑝

+ 𝛷𝐷𝑡 + 𝐺𝑋𝑡 + 𝜀𝑡 

where, 𝐷𝑡is equal to the matrix (lx1) of 

deterministic components, 𝑋𝑡 is equal to the 

matrix (mx1) of external variables, 𝛷 and G 

are the model parameters matrix as well. 

 

Conditional vector autocorrelation model 

considering anisotropy (ARCH Model) 

ARCH models were first introduced by 

Engle (1982) for economic models and are 

the first models with a systematic procedure 
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for modeling volatility (Engle, 1982). 

ARCH models work in two ways: (a) the 

mean-adjusted return on investment is 

separate but dependent, and (b) the model is 

dependent and can be represented by a 

second-order function of the previous data. 

In general, the ARCH model is considered 

as follows: 

where 𝜎𝑡
2 represents the conditional 

variance, εt denotes the residual or error 

term of the model, which is characterized 

by a zero mean and a unit variance, a_0≥0, 

b_i≥0 are the model parameters , m is the 

model order and Zt represents the time 

series data corresponding to the parameter 
of interest. For a deeper understanding of 

the ARCH model, the architecture of the 

ARCH(1) model. 

 

(19) 𝛼𝑡 = 𝜎𝑡𝜀𝑡   ,   𝜎𝑡
2 = 𝛼0 + 𝛼1𝛼𝑡−1

2  

where  𝑎0 > 0 and 𝑎1 ≥ 0. Initially, it is 

essential to assume that the conditional 

mean denoted by 𝑎t is equal to zero. This is 

because: 

 

(20) 
𝐸(𝛼𝑡) = 𝐸[𝐸(𝛼𝑡|𝐹𝑡−1)]

= 𝐸[𝜎𝑡𝐸(𝜀𝑡)] 
The conditional variance is calculated as 

below: 

 

(21) 

𝑉𝑎𝑟(𝛼𝑡) = 𝐸(𝛼𝑡
2)
= 𝐸[𝐸(𝛼𝑡

2|𝐹𝑡−1)]
= 𝐸[𝛼0

+ 𝛼1𝑎𝑡−1
2 ]

= 𝛼0

+ 𝛼1𝐸(𝛼𝑡−1
2 ) 

where considering  𝐸(𝑎t) = 0, 

𝑉𝑎𝑟(𝑎𝑡) = 𝐸(𝑎𝑡−1) = 𝐸(𝑎𝑡−1
2 ), 𝑎t is 

a fixed and static process. Thereby, we 

have: 

 

𝑉𝑎𝑟(𝛼𝑡) = 𝛼0 + 𝛼1𝑉𝐴𝑅(𝛼𝑡)                (22) 

𝑉𝑎𝑟(𝛼𝑡) =
𝛼0

(1−(𝛼0))
                                (23) 

Since variance 𝑎𝑡  must be greater than 

zero, as a result, 𝛼1 can be at most one. In 

some cases, there must be values greater 

than (𝛼𝑡), Therefore, α1 must generate a 

surplus of torque. For instance, when 

examining the behavior in sequences, the 

fourth moment (𝛼𝑡) should be limited. 

Considering normality 𝜀𝑡 in the equation, 

we have: 

                              

    

(24)          

𝐸(𝛼𝑡
4|𝐹𝑡−1) = 3[𝐸(𝛼𝑡

2|𝐹𝑡−1)]
2  

= 3(𝛼0 + 𝛼1𝛼𝑡−1
2 )2 

(25) 

𝐸(𝛼𝑡
4) = 𝐸[𝐸(𝛼𝑡

4|𝐹𝑡−1)]
= 3𝐸(𝛼0

+ 𝛼1𝛼𝑡−1
2 )2

= 3𝐸(𝛼0
2

+ 2𝛼0𝛼1𝛼𝑡−1
2

+ 𝛼1
2𝛼𝑡−1

4 ) 

If  𝛼𝑡 is treated as the fourth constant term 

and m4 = E(𝛼𝑡
4), then: 

𝑚4 = 3𝐸(𝛼0
2 + 2𝛼0𝛼1𝑉𝑎𝑟(𝛼𝑡) +

𝛼1
2𝑚4) = 3𝛼0

2 (1 + 2
𝛼1

1−𝛼1
) + 3𝛼1

2𝑚4  (26)   

Finally, 

𝑚4 =
3𝛼0

2(1+𝛼1)

(1−𝛼1)(1−3𝛼1
2)

                                (27)   

 

Model evaluation criteria 
By using two factors, the root mean square 

error (RMSE) and the Nash-Sutcliffe 

coefficient (NSE), it is possible to find the 

best model based on the minimum RMSE 

(28) and the maximum NSE (29): 

(28) 𝑅𝑀𝑆𝐸 = [
∑ (𝑛

𝑖=1 �̑�𝑖 − 𝑄𝑖)
2

𝑁
]

0.5

 

(29) 

 

𝐶𝐸 = 1 −
∑ (𝑄𝑖 − 𝑄𝑖

′)2𝑇
𝑖=1

∑ (𝑄𝑖 − 𝑄�̅�)
2𝑇

𝑖=1

 

In the above equations, 𝑄  ، 𝑄′، 𝑄𝑖  are the 

mean dew point, the calculated dew point, 

the observed dew point, respectively with n 

denoting the total number of data points. In 

order to combine linear models with a 

group of nonlinear models, in the first step, 

the information and data will be calculated 

using linear models, and then the remaining 

series of calculations and models will be 

fitted with a nonlinear model [7,8,9]. 

 

Results and Discussion 

According to Table 2, the parameters that 

have the highest correlation coefficients 

with the dew point at all stations studied are 

temperature in terms of average 

temperature, maximum temperature, and 

minimum temperature. These three 

parameters are used as inputs for the 

models. As mentioned earlier, the number 
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of inputs for each of the four models is 

three. The next parameters that have the 

highest correlation with the dew point are 

potential evapotranspiration and sunshine 

hours per day. 

 
Table 2. Correlation of data with dew temperature 

Studied parameters 

Station Maximum 

temperature 

Minimum 

temperature 
Average 

temperature 

Average 

relative 

humidity 

Wind speed at 

a height of 10 

meters 

sunny 

hours 

Evaporation and 

transpiration 

potential 

0.74 0.72 0.78 -0.37 0.18 0.53 0.62 Bam 

0.74 0.70 0.77 -0.38 0.59 0.62 0.64 Zabol 

0.69 0.62 0.78 -0.33 0.42 0.50 0.52 
Torbat-e 

Heydarieh 

0.57 0.55 0.6 -0.26 0.24 0.47 0.50 Tabas 

0.63 0.62 0.78 -0.42 0.46 0.52 0.59 Sabzevar 

0.65 0.61 0.83 -0.37 0.46 0.50 0.57 Mashhad 

0.61 0.52 0.74 -0.24 0.14 0.41 0.50 Kerman 

0.78 0.75 0.76 -0.08 0.22 0.16 0.60 Iranshahr 

0.93 0.377 0.97 -0.05 0.20 0.63 0.68 Chabahar 

0.64 0.57 0.69 -0.21 0.36 0.42 0.48 Birjand 

0.62 0.55 0.67 -0.17 -0.05 0.32 0.54 Zahedan 

 

The De Martonne Index for Climate 

Classification of the Studied Stations 

The De Martonne approach was employed 

to investigate and classify the climatic 

conditions in the regions and stations under 

examination. The outcomes of the climate 

analysis of different stations are shown in 

Table 3. 

 
Table 3. The De Martonne index for the studied stations 

Station 
Average annual 

rainfall 

Average 

temperature 
Climate De Martonne index 

Bam 68 16 Dry 2.615 

Birjand 168.5 16 Dry 6.48 

Chabahar 110 26.4 Dry 3.02 

Iranshahr 105 25.8 Dry 2.93 

Kerman 142 15 Dry 5.68 

Mashhad 250 15.7 Dry 9.72 

Sabzevar 169 16.55 Dry 6.36 

Tabas 80 20 Dry 2.66 

Torbat-e Heydarieh 250 20 Dry 8.33 

Zabol 61 20 Dry 2.03 

Zahedan 89 14.95 Dry 3.56 

 

Modeling and calculation method 

First, we modeled the data using two 

models, CARMA and VAR. Then, the 

random coefficient (remaining series) 

extracted from the two models was 

developed using the GARCH 

model, resulting in the production of two 

models, CARMA-GARCH and VAR-

GARCH. To train these models, 80% of the 

data was used at each station and the model 

was trained. Then, the models were tested 

with the remaining 20% of the data. In other 

words, using the output of the models and 

the values predicted by them, the obtained 

values are compared with the remaining 

20% of the data to compare the models 

performance at each station. To assess the 

models performance and validate them, two 

parameters were used: the RMSE and NSE. 

The data is monthly from 1983 to 2021 (457 

months). The data of 367 months, 

representing 80% of the data, was entered 

into the models for the testing phase, and 

then the output of the model was compared 

with the remaining 90 months of data. 

 

Results of modeling dew point values in 

the studied stations based on the 

CARMA model 

Initially, 80% of the data was utilized to  
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train the model. Subsequently, the model 

underwent training, and its outputs were 

generated during the testing phase spanning 

from 2013 to 2021, based on the 

information provided in Table (4). These 

outputs were then adjusted to match the 

actual values. Evaluating the performance 

of the model, quantified by the RMSE and 

NSE, was conducted for both the training 

and testing phases of the CARMA model 

across 11 study stations. The detailed 

results can be found in Table (4). 

 
Table 4. Dew point modeling results in training and testing phase based on CARMA model 

Station 
RMSE Nash-Sutcliffe Coefficient 

Training Testing Training Testing 

Bam 3.05 2.67 0.53 0.58 

Birjand 4.10 1.54 0.26 0.85 

Chabahar 3.16 3.42 0.89 0.90 

Iranshahr 3.38 1.94 0.64 0.90 

Kerman 4.16 1.81 0.39 0.73 

Mashhad 4.90 3.38 0.46 0.37 

Sabzevar 3.37 2.13 0.51 0.68 

Tabas 2.79 1.61 0.44 0.65 

Torbat-e Heydarieh 4.19 2.64 0.47 0.57 

Zabol 3.00 2.28 0.60 0.66 

Zahedan 3.75 1.88 0.44 0.73 

 

Determine the appropriate number of 

ACF delays 

The VAR model analyzes various time lags 

in order to determine the optimal lag for 

incorporating data into the model. This 

feature of the VAR model enhances the 

model in comparison to linear models that 

do not take lag into account. Based on the 

findings, a lag of 3 was identified as the 

most suitable delay for inputting data from 

10 stations into the model, while for the 

Tabas station, a delay of 2 was deemed 

appropriate for introducing data into the 

model. 

The outcomes of modeling and simulation 

of dew point values at the investigated 

stations based on VAR model 

Table (5) presents the comparison between 

the actual dew temperature data and the 

model output values during the training and 

testing phases for 11 study stations. The 

model was trained using 80% of the data up 

until the month of 367, while the remaining 

data from the month of 367 to 457 was used 

for testing the model's performance against 

the real data. The VAR model for the 11 

study stations is detailed in Table (5).

 
Table 5. Dew point modeling results in training and testing phase based on VAR model 

Station 
RMSE Nash-Sutcliffe Coefficient 

Training Testing Training Testing 

Bam 1.69 1.30 0.86 0.90 

Birjand 2.02 1.68 0.82 0.82 

Chabahar 1.67 3.47 0.97 0.89 

Iranshahr 1.74 2.10 0.91 0.88 

Kerman 2.02 1.70 0.86 0.76 

Mashhad 2.29 3.06 0.88 0.48 

Sabzevar 1.82 1.99 0.86 0.72 

Tabas 1.54 1.70 0.83 0.61 

Torbat-e Heydarieh 2.07 2.62 0.87 0.57 

Zabol 1.51 2.34 0.90 0.64 

Zahedan 2.02 1.68 0.83 0.79 

 

Comparing the CARMA and VAR models 

In the training phase for the VAR model at 

Bam station, the root mean square error 

value is 1.69 degrees Celsius. On the other 

hand, the training phase for the CARMA 

model at the same station has an error value 

of 3.05 degrees Celsius. The efficiency 

coefficient for the VAR model in the 

training phase is 0.86, while for the 

CARMA model it is 0.53. Generally, the 
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VAR model shows lower error and higher 

efficiency coefficient during the training 

phase. Moving on to the testing phase, the 

error value for the VAR model is 1.30 

degrees Celsius, with a Nash-Sutcliffe 

coefficient of 0.90. In contrast, the 

CARMA model has an error value of 2.67 

degrees Celsius and a Nash-Sutcliffe 

coefficient of 0.58 in the testing phase. 

Overall, the VAR model outperforms the 

CARMA model at Bam station, 

demonstrating 55% better efficiency and 

51% less error in the testing phase. 

In all 11 stations that were investigated, 

the VAR model has consistently 

demonstrated superior performance in terms 

of error coefficient and model efficiency 

coefficient during the training phase, when 

compared to the CARMA model. However, 

during the testing phase, the CARMA 

model outperformed the VAR model only 

in the Iranshahr station. Specifically, the 

Nash-Sutcliffe coefficient for the CARMA 

model in the testing phase was 0.90, 

whereas for the VAR model it was 0.88. 

Additionally, the CARMA model exhibited 

a 7.6% lower error rate compared to the 

VAR model. 

 

Studying the stability of the residual 

series for the VAR model 

Prior to fitting the GARCH model, an 

examination was conducted on the residual 

or random series structural stability  using 

ordinary least square (OLS) regression and 

Cumulative Sum (Cusum) tests. The Cusum 

test employs a particular approach from a 

broader statistical framework to calculate 

the empirical volatility process. The 

outcomes of this particular test were further 

validated based on the shape and 

confidence intervals. Notably, the OLS-

based CUSUM process remained within the 

confidence intervals (CIs) (red lines) at all 

stations, indicating no evidence of structural 

changes. Consequently, the residual series 

exhibits the necessary stability to be 

incorporated into the GARCH model and, 

subsequently, analyze the common 

frequency of the residual series in CARMA 

and VAR models in the next step. 

 

Modeling results of dew point values in 

the studied stations based on CARMA-

GARCH model 

Table (6) presents the comparison between 

the actual dew temperature data and the 

model's output values during the training 

and testing phases for 11 study stations. 

The model was trained using 80% of the 

data up until the month of 367, while the 

remaining data from the month of 367 to 

457 was used for testing the model's 

performance against the real data. 

 
Table 6. Dew point modeling results in training and testing phase based on CARMA-GARCH 6 model 

Station 
RMSE Nash-Sutcliffe Coefficient 

Training Testing Training Testing 

Bam 2.87 2.53 0.58 0.63 

Birjand 3.90 1.39 0.33 0.88 

Chabahar 2.96 3.05 0.9 0.92 

Iranshahr 3.23 1.71 0.71 0.92 

Kerman 4.08 1.4 0.41 0.84 

Mashhad 4.69 3.15 0.51 0.45 

Sabzevar 3.27 1.67 0.54 0.80 

Tabas 2.61 1.37 0.51 0.75 

Torbat-e Heydarieh 4.15 2.48 0.48 0.62 

Zabol 2.80 1.98 0.66 0.74 

Zahedan 3.62 1.49 0.46 0.83 

 

Results of modeling the dew point values 

in the studied stations based on VAR-

GARCH model 

Table (7) displays the comparison between 

the actual dew temperature data and the 

model's output values during the training 

and testing phases for 11 study stations. 

The model was trained using 80% of the 

data up until the month of 367, while the 

remaining data from the month of 367 to 

457 was used for testing the model's 

performance against the real data. 
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Table 7. Dew point modeling results in training and testing phase based on VAR-GARCH model 

Station 
RMSE Nash-Sutcliffe Coefficient 

Training Testing Training Testing 

Bam 1.32 0.99 0.94 0.91 

Birjand 1.75 1.37 0.87 0.88 

Chabahar 1.27 2.33 0.98 0.9 

Iranshahr 1.42 1.74 0.94 0.92 

Kerman 1.86 1.4 0.88 0.84 

Mashhad 2.08 3.08 0.9 0.47 

Sabzevar 1.55 1.69 0.9 0.79 

Tabas 1.19 1.37 0.9 0.75 

Torbat-e Heydarieh 1.89 2.48 0.89 0.62 

Zabol 1.22 3.02 0.93 0.73 

Zahedan 1.74 1.53 0.88 0.82 

 

Comparison of CARMA-GARCH and 

VAR-GARCH models 

During the training phase, the VAR-

GARCH model exhibited superior 

performance relative to the CARMA-

GARCH model across all investigated 

stations. In the subsequent testing phase, 

the VAR-GARCH model emerged as the 

top-performing model in 7 out of the 11 

stations, namely Bam, Birjand, Iranshahr, 

Kerman, Tabas, Torbat Heydarieh, and 

Mashhad. Conversely, the CARMA-

GARCH model demonstrated superior 

performance relative to the VAR-GARCH 

model in 4 stations, namely Sabzevar, 

Zabol, and Chabahar. 

 

Examining different models and 

presenting the best model 

The dew point values in the studied stations 

(Bam, Birjand, Chabahar, Iranshahr, 

Kerman, Mashhad, Sabzevar, Tabas, 

Tarbiat Heydarieh, Zabul, Zahedan) were 

estimated using four different models. 

These models utilized simultaneous models 

and time series vectorization with 

Anisotropy. In the training phase, 

verification and validation of different 

patterns were conducted in other stations. 

Based on the obtained figures, it can be 

observed that the closer the black points are 

to the black line, the higher the correlation 

of the data. The red lines denote the 95% 

CI. If there are more data points or black 

points outside the range, it indicates a 

higher error in the model. When comparing 

the four models, it was found that the VAR 

and VAR-GARCH models exhibited higher 

correlation and also accuracy during the 

training phase compared to the other two 

models. Furthermore, the CARMA-

GARCH and VAR-GARCH models 

demonstrated the best correlation and 

accuracy during the testing phase, which is 

crucial. The efficiency and accuracy of the 

models were fully evaluated in terms of 

RMSE and model efficiency coefficient 

(NSE) during both the training and testing 

phases. Figure (2) displays the estimated 

dew point values for the Bam station, while 

the remaining stations are provided in the 

appendix. Figure.A.1 for Birjand Station, 

Figure.A.2 for Chabehar Station, 

Figure.A.3 for Iranshahr Staion, Figure.A.4 

for Kerman Station, Figure.A.5 for Mashad 

Station, Figure.A.6 Sabzevar Station, 

Figure.A.7 Tabas Station, Figure.A.8 

Torbat Heidarie Station, Figure.A.9 Zabol 

Station and Figure.A.10 for Zahedan 

Station displays the estimated dew point 

values based on all presented models in this 

study.  
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Figure 2. The outcomes of assessing and measuring the accuracy of  

estimated dew point values in Bam station 

 

Nash-Sutcliffe criterion (in training and 

testing phase) 

The Nash-Sutcliffe criterion is depicted in 

Figure (3) during the training phase for 

comparison, while Figure (4) illustrates it 

during the testing phase. Based on Figure 

(2), it is evident that the VAR-GARCH 

model outperforms all other models in the 

training phase, ranking second only to the 

VAR model. Furthermore, in the testing 

phase, both the VAR-GARCH and 

CARMA-GARCH models exhibit 

comparable performance, as indicated by 

Figure (3). However, the CARMA-GARCH 

model displays a higher error rate, whereas 

the VAR-GARCH model demonstrates 

consistent performance across different 

stations.
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Figure 3. Model efficiency criterion (Nash-Sutcliffe) of stations in the training phase 

 

 
Figure 4. Model efficiency criterion (Nash-Sutcliffe) of stations in the testing phase 

 

Root mean square error (in training and 

testing phase) 

The training phase results for the root mean 

square error criteria can be observed in 

Figure (5), while the testing phase results 

are depicted in Figure (6). Figure (5) 

indicates that the VAR-GARCH model 

outperforms all other models in the training 

phase, providing the best performance. The 

VAR model, on the other hand, exhibits the 

best performance in the training phase and 

ranks as the second-best model. In the 

testing phase, both the VAR-GARCH and 

CARMA-GARCH models demonstrate 

similar performance, as shown in Figure 

(6). However, based on the output of the 

Bam station during the testing phase, the 

CARMA-GARCH model exhibits a higher 

difference in error magnitude relative to the 

VAR-GARCH model. Consequently, we 

can anticipate a more reliable output from 

the VAR-GARCH model. 
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Figure 5. Model error measure (RMSE) of the stations in the training phase 

 

 
Figure 6. Model error measure (RMSE) of the stations in the testing phase 

 

Taylor and Violin diagram 

Figure (7) displays the Taylor diagram, 

while Figure (8) exhibits the violin 

diagram, which represents the similarity of 

time series for the Bam station. It is evident 

from Figure (7) that the VAR-GARCH 

model exhibits higher certainty and 

correlation compared to the other models. 

On the other hand, Figure (8) reveals that 

the VAR-GARCH model successfully 

simulates the quartiles of the data, but it 

struggles in predicting the minimum and 

maximum dew point temperatures. In fact, 

none of the four models examined in this 

station were able to accurately predict the 

minimum and maximum data values. 
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Figure 7. Taylor diagram of Bam station in the test phase 

 
Figure 8. Violin diagram (similarity of time series) of BAM station in the testing phase 

 

The Taylor and Willin diagram was also 

examined for other stations. After validating 

four different models, it was found that the 

VAR-GARCH model had the least amount of 

error at the Bam station, with an error rate of 

0.99 degrees Celsius. The VAR model ranked 

second at this station, with an error rate of 1.3 

degrees Celsius for dew point estimation. 

This error rate is approximately 31% higher 

than the value calculated by the first model. 

On the other hand, the first pattern 

(CARMA) had the highest amount of errors 

and was ranked fourth. Overall, based on the 

RMSE, the VAR-GARCH model is 

considered the best model, followed by the 

VAR, CARMA-GARCH, and CARMA 

models. Furthermore, the efficiency criterion 

also revealed that the VAR-GARCH and 

VAR models exhibit the highest efficiency 

compared to the other two models. The 

efficiency coefficient (Nash-Sutcliffe) also 

identified the VAR-GARCH, VAR, 

CARMA-GARCH, and CARMA models as 

better models, along with RMSE. Meanwhile, 

the efficiency coefficient of the CARMA and 

CARMA-GARCH models had lower values. 

 

Conclusion 

The dew point values across various 

climates in Iran were estimated using 

meteorological data from eleven stations, 

all classified as dry according to the De 

Martonne index. The input data for 

estimating dew point values included 

maximum, minimum, and average 

temperatures from 1983 to 2021, which 

showed the highest correlation with dew 

point. The estimation was performed using 

multivariable and nonlinear regression with 

a support vector approach. Initially, the 

CARMA and VAR methods were applied. 

Subsequently, the residual series were 
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modeled using the ARCH approach, 

resulting in the development of the 

CARMA-GARCH and VAR-GARCH 

models. 

The accuracy of the estimates at each 

step was assessed using RMSE and the 

Nash-Sutcliffe efficiency (NSE) criterion. 

The evaluation of the VAR and CARMA 

models showed that the VAR model 

outperformed the CARMA model in both 

training and testing phases, likely due to the 

VAR model's ability to capture nonlinear 

components. Furthermore, both the VAR-

GARCH and CARMA-GARCH models 

demonstrated superior performance 

compared to the base models, as the 

modeling of the residuals improved the 

results. 

During the testing phase, both VAR-

GARCH and CARMA-GARCH models 

performed similarly; however, the VAR-

GARCH model showed a marked 

advantage over the CARMA-GARCH 

model in the training phase. The VAR-

GARCH model achieved the lowest error 

rate and the highest model efficiency for 

Bam station, with an RMSE of 0.99°C and 

a Nash-Sutcliffe coefficient of 0.94, 

representing the best performance among 

all stations and models tested. 

The number of input parameters for the 

three-variable model depends on the 

temperature type. Generally, a model that 

produces accurate results with fewer inputs 

is more efficient than one requiring many 

parameters. Based on these findings, the 

investigations indicate that the VAR-

GARCH model exhibited superior 

performance during the training phase and 

demonstrated lower error rates and higher 

efficiency across most stations. Thus, the 

VAR-GARCH model can be considered the 

best model examined in this research. 
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Appendix 

 
Figure A.1. The results of checking and measuring the accuracy of estimated dew  

point values in Birjand station 
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Figure A. 2. The results of checking and measuring the accuracy of estimated dew  

point values at Chabahar station 
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Figure A. 3. The results of checking and measuring the accuracy of estimated dew 

 point values at Iranshahr station 
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Figure A. 4. The results of checking and measuring the accuracy of estimated dew  

point values in Kerman station 
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Figure A. 5. The results of checking and measuring the accuracy of estimated dew  

point values in Mashhad station 
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Figure A. 6. The results of checking and measuring the accuracy of estimated dew 

 point values at Sabzevar station 
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Figure A. 7. The results of checking and measuring the accuracy of estimated dew 

 point values at Tabas station 
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Figure A. 8. The results of checking and measuring the accuracy of estimated dew  

point values at Torbat Heydarieh station 
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Figure A. 9. The results of checking and measuring the accuracy of estimated dew  

point values at Zabol station 
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Figure A. 10. The results of checking and measuring the accuracy of estimated  

dew point values at Zahedan station 

 

 


