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Rice or Paddy cultivation has a significant impact on the 
environment, especially concerning water usage and greenhouse gas 

emissions. In this study, a life cycle assessment (LCA) and 

cumulative exergy demand (CExD) analysis were carried out to 
compare the environmental effects of paddy cultivation under various 

scenarios. The ReCiPe2016 method was utilized to evaluate three 

different impact categories. Specifically, for the Hashemi variety, the 

resource impact category for conventional and mechanized methods 
was 162.82 and 182.25 USD2013, respectively. For the Khazar 

variety, the resource impact category for conventional and 

mechanized methods was 112.49 and 126.19 USD2013, respectively. 
The ecosystem category showed the lowest environmental emissions. 

It was found that electricity was the primary contributor, accounting 

for over 40% of the environmental emissions across all damage 
categories. The CExD method identified seven types of energy, with 

non-renewable fossil energy showing significant values in both 

conventional and mechanized cultivation of the Hashemi variety 

(21666.32 and 24537.68 MJ ton–1) as well as for the Khazar variety 
(14938.53 and 16847.06 MJ ton–1). Mechanized cultivation of the 

Khazar variety exhibited a notable energy output of 1498.68 MJ ton–1 

of renewable biomass energy. By conducting a thorough comparison 
using LCA and CExD, it becomes possible to pinpoint the most 

sustainable practices for paddy cultivation, considering the full scope 

of environmental impacts and resource consumption. This valuable 

information can guide decision-making and facilitate the development 
of more sustainable agricultural practices. 
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Introduction 

Rice cultivation, also known as paddy 

production, is a vital agricultural activity that 
plays a crucial role in ensuring food security 

and supporting rural livelihoods in many 

regions around the world. However, 

traditional methods of paddy production often 
require a lot of labor and are not very efficient 

in their use of resources, leading to various 

technical, energy, and environmental 
challenges (Koga and Tajima, 2011). In 

recent years, there has been a growing interest 

in studying the impact of land integration and 

agricultural mechanization on paddy 
production. Land integration involves 

consolidating small, fragmented land holdings 

into larger, more efficient units, while 
agricultural mechanization uses machinery 

and technology to automate and streamline 

farming processes (Devendra and Leng, 
2011). In addition, it assesses the energy 

implications, such as fuel consumption and 

energy efficiency, as well as the 

environmental impacts, including greenhouse 
gas emissions, water usage, and soil 

degradation (Algarni et al., 2023). Through 

the analysis of various cultivation scenarios, 
researchers and policymakers can gain 

insights into the potential trade-offs and 

synergies between land integration, 
agricultural mechanization, and sustainable 

paddy production (Nabavi-Pelesaraei et al., 

2018). This knowledge can guide decision-

making processes, facilitating the 
development of strategies and policies that 

support efficient resource utilization, 

improved productivity, and reduced negative 
environmental impacts. Overall, the 

examination of the influence of land 

integration and agricultural mechanization on 

technical, energy, and environmental aspects 
in paddy production is crucial for advancing 

sustainable and resilient agricultural systems 

(Kaab et al., 2019a). It offers valuable insights 
into how these practices can enhance food 

security, rural livelihoods, and environmental 

sustainability within the context of rice 
cultivation. The effect of integrating land and 

implementing agricultural mechanization on 

paddy production has attracted attention from 

agricultural researchers and policymakers 
(Kaab et al., 2023). However, there is a need 

for a more comprehensive examination of this 

impact, considering the technical, energy, and 

environmental factors involved in various 

cultivation scenarios. An innovative approach 
to studying this impact could involve using a 

systems thinking approach that takes into 

account the interconnectedness and feedback 

loops between different components of the 
agricultural system (Mohammadi Kashka et 

al., 2023). 

In recent years, there has been a focus in 
the agricultural industry on studying the 

effects of energy usage and environmental 

emissions on agricultural products. 

According to Khan et al. (2010), rice 
demonstrates an energy efficiency of 70.6%, 

with the majority of input energy in rice 

fields attributed to chemical fertilizers 
(43%). Another study by Khan et al. (2009) 

estimated the ratio of water energy in canal 

and pump irrigation systems for wheat, rice, 
and barley. Khosruzzaman et al. (2010) 

studied rice production in Bangladesh and 

reported input and output energy values. 

Furthermore, Kosemani and Bamgboye 
(2020) noted that large farms can maximize 

energy efficiency through improved resource 

management. Additionally, research by Guo 
et al. (2022) examined the differences 

between fully mechanized and semi-

mechanized rice production, emphasizing 
the effects of mechanization on fuel, 

fertilizer, and water usage. The 

environmental impact of rice production was 

assessed in both spring and summer 
cultivation systems, revealing that spring 

planting resulted in lower environmental 

effects compared to summer (Mohammadi et 
al., 2015). This data could be used to 

develop more accurate models that capture 

the spatial and temporal variability of 

different factors in the agricultural system. 
Overall, examining the impact of land 

integration and agricultural mechanization 

on paddy production in a comprehensive and 
innovative manner could provide valuable 

insights for policymakers and agricultural 

practitioners on how to optimize the 
performance of the agricultural system while 

minimizing its environmental impact. The 

novelty of this study lies in its 

comprehensive approach to comparing the 
environmental impact of paddy cultivation 

under different scenarios using LCA and 
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CExD. LCA is a widely used method for 

assessing the environmental impact of a 

product or process throughout its entire life 
cycle, while CExD measures the total 

amount of exergy required to produce a 

product or service. The aim of the study is to 

provide a holistic understanding of the 
environmental impact of paddy cultivation 

by considering various factors such as land 

use, water consumption, energy input, and 
greenhouse gas emissions. By comparing 

different scenarios, the study aims to identify 

the most sustainable practices for paddy 

cultivation and provide valuable insights for 
policymakers, farmers, and other 

stakeholders in the agricultural sector. The 

study will contribute to the existing body of 
knowledge on sustainable agriculture and 

provide practical recommendations for 

improving the environmental performance of 
paddy cultivation. Additionally, by using 

both LCA and CExD, the study will offer a 

more comprehensive and robust analysis of 

the environmental impact, allowing for a 
deeper understanding of the trade-offs and 

potential synergies between different 

environmental indicators. 

 

Materials and methods 

For this study we collected data in Guilan 

Province, Iran, which is renowned for its 

unique climate and natural characteristics 
compared to other parts of the country. 

Located on the southwest coast of the 

Caspian Sea, the province spans latitudes 

between 36°34′and 38°27′N and 

longitudes between 48° 53′and 50°

34′E (Ministry of Jihad-e-Agriculture of 

Iran, 2021). The specific location of the 
case study is illustrated in Figure 1. A 

random survey of 120 paddy producers was 

conducted to gather data on agricultural 

input factors such as seed quantities, 
fertilizer, biocides, energy conduits, 

equipment and machinery, cultivated land 

areas, and paddy yield. The sample size was 
determined using the method outlined by 

Kaab et al., (2019b), shown in Equation 1 

and the data was collected through in-
person questionnaires. 

 

Figure 1. The study area located in north of Iran. 
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The required sample size (n) is determined 

by the number of farms per target 

population (N), the reliability coefficient (z) 
which equals 1.96 representing a 95% 

confidence level, the estimated proportion 

of an attribute in the population (p) which 
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equals 0.5, the complement of the estimated 

proportion (q) which also equals 0.5, and 

the permitted error ratio deviation from the 
average population (d) which equals 0.05. 

 
Paddy cultivation  
Hashemi and Khazar rice are two popular 

varieties of rice that are produced in 

different regions of Iran. The production 

process for both types of rice involves 
several steps, including cultivation, 

harvesting, processing, and packaging. 

Paddy cultivation typically takes place in 
flooded fields, known as paddy fields, 

where the rice plants are grown. The 

cultivation process involves preparing the 
field, planting the rice seeds, and 

maintaining the proper water levels and soil 

conditions for the rice to grow. Once the 

rice plants have matured and the grains 
have developed, they are ready to be 

harvested. The harvesting process involves 

cutting the rice plants and collecting the 
grains, which are then dried to prepare them 

for processing. The processing of rice 

involves several steps, including milling, 
polishing, and sorting. The rice grains are 

first milled to remove the outer husk, bran, 

and germ, leaving behind the white rice 

kernel. The rice is then polished to remove 
any remaining bran and make the grains 

shiny. Finally, the rice is sorted to remove 

any impurities and ensure uniformity in size 
and quality. After processing, the rice is 

packaged in various sizes and types of 

packaging, such as bags or containers, for 

distribution and sale. The production of 
Hashemi and Khazar rice follows these 

general steps, but the specific details of the 

production process may vary depending on 
the region and the methods used by 

individual producers. Both types of rice are 

known for their high quality and are 
popular choices for cooking traditional 

Persian dishes (Molaee Jafrodi et al., 2022). 

 
LCA analysis  

As per ISO14040, Life Cycle Assessment 

(LCA) involves systematically evaluating 
the inputs, outputs, and environmental 

effects of a production system throughout 

its entire life cycle. LCA is a valuable tool 

for decision-making and management, 

especially concerning environmental 
considerations (Elyasi et al., 2022). In 

recent years, two main approaches to LCA 

have emerged. One focuses on thoroughly 

documenting a product's history, initial 
flows, and resulting environmental impacts, 

while the other involves analyzing and 

comparing potential environmental impacts 
of different systems and product processes 

(Ghasemi-Mobtaker et al., 2022). Careful 

design of an LCA for a production system 

involves defining its purpose and scope, 
selecting the functional unit (FU) and 

reference, establishing system boundaries, 

and creating appropriate inventory and 
allocation methods for greenhouse gas 

emissions in primary products and by-

products (Kazemi et al., 2023). There are 
two approaches to conducting LCA studies: 

the comprehensive Life Cycle Impact 

Assessment (LCIA) study, which covers all 

four stages, and the Life Cycle Inventory 
(LCI), which includes three stages without 

considering the LCIA stage. The analysis of 

life cycle results serves as the basis for 
decision-making. The general framework 

for the steps of LCA consists of four key 

stages: defining the purpose and scope, 
inventory analysis, impact assessment, and 

interpretation of results. The first step 

involves establishing the objectives, 

boundaries, functional unit (FU), and 
assumptions of the study. Inventory 

analysis involves gathering data and 

quantifying inputs and outputs. Impact 
assessment assesses potential 

environmental consequences based on the 

results of the inventory analysis. Finally, 

the interpretation of results provides 
conclusions and recommendations for 

decision makers and aims to present a clear 

and consistent expression of the LCA 
results (Nunes et al., 2017). The analysis 

focused on all environmental factors related 

to the production of one ton of paddy as the 
FU, with the study boundaries depicted in 

Figure 2. 
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Figure 2. The system boundary for different methods of paddy cultivation. 

 
In life cycle assessment (LCA), inputs 

categorized as Off-Farm emissions include 

human labor, electricity, water, seeds, 
biocides, chemical fertilizers, diesel fuel, 

and machinery. Conversely, agricultural 

machinery like tractors and trailers used for 
various farm tasks contribute to On-Farm 

emissions. Data from Table 1, Table 2, and 

Table 3 is collected to evaluate emissions 

related to machinery usage, diesel fuel 
combustion, and chemical fertilizers. 

Maintaining uncontaminated fuel is crucial 

for optimal performance, as mishandling 
can result in fuel pollution, leading to 

contaminants such as water, dust particles, 

and microbial growth, which can cause 
black sludge. Therefore, ensuring fuel 

quality is essential for efficient operation, 

extended service life, and emission control 

in engines (Soam et al., 2017; Kaab et al., 
2024). Strategic crop production heavily 

depends on rice fertilizer, which is essential 

for increasing crop yields. However, 
excessive fertilizer use can have negative 

effects, such as reducing yields and 

increasing environmental emissions. 

Chemical fertilizers can harm air and water 
quality and lead to the release of 

greenhouse gases and heavy metals into the 

soil. To assess these environmental 
emissions, the coefficients of the input 

consumption values are multiplied, as 

detailed in the findings of (Ghasemi-
Mobtaker et al., 2020). 

 
Table 1. Equivalent of direct emission of 1 MJ diesel fuel for 1 MJ burning in EcoInvent database. 

Emission Amount (g MJ-1 diesel) 

CO2 74.5 

SO2 2.41E-02 
CH4 3.08E-03 

Benzene 1.74E-04 

Cd 2.39E-07 

Cr 1.19E-06 

Cu 4.06E-05 

N2O 2.86E-03 

Ni 1.67E-06 

Zn 2.39E-05 

Benzo (a) pyrene 7.16E-07 

NH3 4.77E-04 

Se 2.39E-07 

PAH  7.85E-05 
HC, as NMVOC 6.80E-02 

NOx 1.06 

CO 1.50E-01 

Particulates (b2.5 μm) 1.07E-01 
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Table 2. Coefficients for calculating the On-Farm emissions related to application of inputs in paddy 

production (IPCC, 2006). 

Characteristic Coefficient (Emission result) 

A. Emissions of fertilizers 

1 [
[kg N2 O − N]

kg Nin fertilzers applied

] 0.01 (to air) 

2  0.1 (to air) 

3  0.001 (to air) 

4 [
[kg NO3

− − N]

kg Nin fertilzers applied

] 0.1 (to water) 

5  0.02 (to water) 

6  0.21 (to air) 

 
B. Conversion of emissions 

1 
Coversion from kg CO2 – C 

to kg CO2 
 

2 
Coversion from kg N2O – N2 

to kg N2O 
 

3 
Conversion from kg NH3 - N 

to kg NH3 
 

4 
Conversion from kg NO3 - N 

to kg NO3 
 

5 
Conversion from kg P2O5 to 

kg P 
 

   

 
C. Emissions from human labor 

1  0.7 (to air) 
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Table 3. Coefficients for calculating the On-Farm emissions to soil of heavy metal related to application 

of chemical fertilizers in paddy production (IPCC, 2006). 

Characteristic 
Heavy metals 

Cd Cu Zn Pb Ni Cr Hg 

1 















appliedfertilzerinNkg

metalHeavy  mg
 6 26 203 5409 20.9 77.9 0.1 

2 















appliedfertilzerinPkg

metalHeavy  mg
 90.5 207 1923 154 202 1245 0.7 

3 















appliedfertilzerinKkg

metalHeavy  mg
 0.2 8.7 11.3 1.5 4.5 10.5 0.1 

 
In this study, various methods such as CML 

2 baseline, Impact 2002+, Eco-indicator 99, 

ReCiPe 2016, EDIP'97, EDIP2003, and 
EPS2000 (Dreyer et al., 2003; Hauschild 

and Barlaz, 2010; Jolliet et al., 2003; 

Kouchaki-Penchah et al., 2017; Molaee 
Jafrodi et al., 2022; Reyes and Sepulveda, 

2006; Saber et al., 2021) were utilized. The 

ReCiPe 2016 method was specifically 
employed for environmental impact 

assessment using SimaPro software. The 

study calculated the emissions index for 

pollutants in paddy production and focused 
on assessing damage to ecosystems, human 

health, and resources as endpoints. Mid-

points were established based on Figure 3, 
and the impact of each mid-point was 

determined, quantified, and aggregated 

using standard units. 

 

 
Figure 3. ReCiPe2016 method addresses various mid-points. 

 
CExD 
The first law of thermodynamics governs 

the influence of material flow properties 

and energy content on the quantity of 

energy in a system. Exergy, on the other 

hand, encompasses both the first and 
second laws of thermodynamics, measuring 

both the quantity and quality of energy. The 

CExD index, expressed in equivalent (MJ 

eq.), represents the total resources required 
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to produce a product or provide a service 

(Cheng et al., 2024). It is divided into eight 

subgroups: fossil, nuclear, hydro, biomass, 
other renewable energy, water, minerals, 

and metals. The CExD Index is based on a 

methodology developed by the Ecoinvent 

Center, and data on different forms of 
energy are sourced from the Ecoinvent 2.2 

database. This study considers seven impact 

categories, including non-renewable 
(fossil), renewable (potential), non-

renewable (primary), renewable (biomass), 

renewable (water), non-renewable (metals), 

and non-renewable (mineral) energy forms 
(Taki and Yildizhan, 2018). 

 

Results and discussion 
LCA analysis 
Table 4 presents data on environmental 

emissions related to inventory, focusing on 
the significant carbon dioxide emissions 

resulting from diesel consumption in the 

mechanized process of Khazar variety. This 

process leads to the release of 427.89 kg of 
CO2 into the atmosphere. Additionally, the 

use of chemical fertilizers contributes to the 

release of N2O and NH3 into the air and 
water, leading to nitrate and phosphate 

contamination. Human labor accounts for 

approximately 25% of the carbon dioxide 

emissions from diesel fuels. Furthermore, 
the use of chemical fertilizers results in the 

release of heavy metals into the soil, with 

lead being the primary contributor and 

mercury being the least significant. Recent 
studies have indicated that direct rice 

production using direct seed culture can 

reduce CH4 emissions, but it may also lead 
to an increase in N2O emissions (Yadav et 

al., 2020). There is a clear correlation 

between NH3 emissions and nitrogen 

fertilizer application, with emissions 
increasing alongside higher nitrogen 

consumption. Research has documented 

annual N2O emissions from Australian rain-
fed wheat fields, linking it to nitrogen 

fertilizer use (Kaab et al., 2021). Given the 

significant greenhouse gas emissions, 
particularly N2O from farms, it is essential 

to consider sustainable and ecological 

management practices such as reducing 

tillage, utilizing organic fertilizers, and 
integrating nitrogen-fixing plants in crop 

rotation as alternatives to chemical 

fertilizers (Nikkhah et al., 2015). 

 
Table 4. On-Farm emissions of different production of paddy in 1 ha. 

Item (unit) Hashemi variety Khazar variety 

1. Emissions by diesel fuel to air (kg) Conventional Mechanized Conventional Mechanized 

(a). Carbon dioxide (CO2) 339.80 402.72 352.38 427.89 

(b). Sulfur dioxide (SO2) 0.10 0.13 0.11 0.13 

(c). Methane (CH4) 0.014 0.016 0.014 0.017 

(d). Benzene 0.0007 0.0009 0.0008 0.0009 

(e). Cadmium (Cd) 0.000001 0.000001 0.000001 0.000001 

(f). Chromium (Cr) 0.000005 0.000006 0.000006 0.000007 

(g). Copper (Cu) 0.000185 0.000219 0.00019 0.00023 

(h). Dinitrogen monoxide (N2O) 0.013 0.015 0.013 0.016 

(i). Nickel (Ni) 0.000008 0.000009 0.000008 0.00001 

(j). Zink (Zn) 0.000109 0.000129 0.00011 0.00013 

(k). Benzo (a) pyrene 0.000003 0.000004 0.000003 0.000004 

(l). Ammonia (NH3) 0.0021 0.0025 0.0022 0.0027 
(m). Selenium (Se) 0.000001 0.000001 0.000001 0.000001 

(n). PAH (polycyclic hydrocarbons) 0.00035 0.00042 0.00037 0.00045 

(o). Hydro carbons (HC, as NMVOC) 0.31 0.36 0.32 0.39 

(p). Nitrogen oxides (NOx) 4.83 5.73 5.013 6.08 

(q). Carbon monoxide (CO) 0.684167 0.81 0.70 0.8615 

(r). Particulates (b2.5 μm) 0.48 0.57 0.50 0.614 

2. Emissions by fertilizers to air (kg)     

(a). NH3 by chemical fertilizers 15.78 12.14 15.78 12.142 

3. Emissions by fertilizers to water (kg)     

(a). Nitrate 17.27 13.28 17.27142857 13.28 

(b). Phosphate 1.31 1.41 1.309859155 1.419 
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Table 4. On-Farm emissions of different production of paddy in 1 ha. 

Item (unit) Hashemi variety Khazar variety 

4. Emission by N2O of fertilizers and soil 

to air (kg) 
    

(a). Nitrogen oxides (NOx) 27.3 21.00 27.3 21 

5. Emission by human labor to air (kg)     

(a). Carbon dioxide (CO2) 231.00 210.00 224 196 

6. Emission by heavy metals of fertilizers 

to soil (mg) 
    

(a). Cadmium (Cd) 6222.00 6496.10 6222.00 6495.10 

(b). Copper (Cu) 16322.00 16646.60 16322.00 16603.10 

(c). Zink (Zn) 142448.00 146063.40 142448.00 146006.90 
(d). Lead (Pb) 712500.00 551012.00 712500.00 551004.50 

(e). Nickel (Ni) 15107.00 15526.00 15107.00 15503.50 

(f). Chromium (Cr) 85457.00 89429.00 85457.00 89376.50 

(g). Mercury (Hg) 61.00 62.30 61.00 61.80 

 
Table 5 presents the results of the 

ReCiPe2016 method, which calculated 

three categories of effects. Specifically, for 
the Hashemi variety, the resource impact 

category for conventional and mechanized 

methods was 162.82 and 182.25 USD2013, 

respectively. Meanwhile, for the Khazar 
variety, the resource impact category for 

conventional and mechanized methods was 

112.49 and 126.19 USD2013, respectively. 
The ecosystem category displayed the 

lowest environmental emissions. 

Additionally, Figures 4 and 5 demonstrate 
that electricity is the primary contributor, 

responsible for over 40% of the 

environmental emissions across all damage 

categories. Conventional rice production 
emits 3.0710 kg CO2eq kg-1, while organic 

rice production emits 4.0154 kg CO2eq kg-1 

(Jirapornvaree et al., 2021). Furthermore, 
research has shown that the excessive use 

of nitrogen fertilizer does not lead to higher 

crop yields and can result in significant 

environmental impacts in the production of 

wheat and barley (Fallahpour et al., 2012). 
Similarly, the overuse of chemical 

fertilizers in sunflower and canola 

production has been observed to lead to 

significant environmental effects, 
particularly related to global warming and 

exploitation (Iriarte et al., 2010). It has also 

been revealed that rapeseed has a higher 
environmental impact per hectare than rice, 

and the rotation of rapeseed-rice has a 

lower environmental impact per square 
millimeter compared to rice-rice rotation. 

Eutrophication is the primary contributor to 

environmental effects in paddy production, 

followed by environmental acidification. 
Ammonia (NH3) emissions significantly 

contribute to environmental degradation 

and acidification, while nitrate loss (NO3-) 
is the main contributor to eutrophication 

(Vural Gursel et al., 2021). 

 
Table 5. The environmental impact values for different methods of 1 ton paddy production. 

Impact categories Unit 
Hashemi variety Khazar variety 

Conventional Mechanized Conventional Mechanized 

Human health DALY 0.058 0.062 0.039 0.041 

Ecosystems species.yr b 6.72E-05 7.18E-05 4.59E-05 4.83E-05 

Resources USD2013 162.82 182.25 112.49 126.19 
a DALY: disability adjusted life years. A damage of 1 is equal to: loss of 1 life year of 1 individual, or 

1 person suffers 4 years from a disability with a weight of 0.25. 
b species.yr: the unit for ecosystems is the local species loss integrated over time. 
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Figure 4. The Hashemi variety of paddy production contributes to the emission of environmental 

impact categories through its input usage in various production processes. 
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Figure 5. The Khazar variety of paddy production contributes to the emission of environmental impact 

categories through its input usage in various production processes. 

 

An LCA was conducted to assess the 
sustainable remediation of contaminated 

agricultural soil in China, considering 

primary, secondary, and tertiary impacts of 
restoring polluted land and emphasizing the 

importance of spatially diverse impacts in 

land management and crop growth. 

Comparing four risk management scenarios 
at a contaminated field in Southern China, 

the study revealed a specific pattern of 

impacts, challenging a belief held by some 
policymakers. It also highlighted the global 

environmental repercussions of 

compensating for the loss of rice paddy 

fields in Southern China by deforesting 
land in the Amazon rainforest, leading to 

significant climate change impact (Zeng et 

al., 2011). The environmental impacts of 
paddy rice production in northern Iran were 

assessed using agrochemical emission 

models and the ReCiPe 2016 methodology. 
The study identified rice seed production, 

diesel fuel, urea, phosphate fertilizer, and 

Diazinon as major environmental hotspots 

in paddy rice production and revealed that 
emission models had a significant impact 

on impact scores across various 

environmental categories. The potential of 
using rice straw as livestock feed to 

mitigate greenhouse gas emissions was also 

highlighted as a viable alternative to 
burning paddy residue on the farm 

(Keramati et al., 2021). The study assessed 

environmental impacts using LCA, 

highlighting emissions related to marine 

aquatic ecotoxicity, fossil fuel depletion, 
and global warming potential. Electricity 

played a significant role in various 

environmental impacts. The study also 
analyzed the cumulative exergy demand, 

showing that non-renewable fossil energy 

use was mainly due to electricity and 

nitrogen fertilizer in wheat farming 
(Ghasemi-Mobtaker et al., 2020). 

 

CExD analysis 
The CExD method, outlined in Table 6, 

identified seven types of energy. Notably, 

the non-renewable fossil energy type 

showed significant values in the 
conventional and mechanized cultivation of 

the Hashemi variety (21666.32 and 

24537.68 MJ ton–1), as well as for the 
Khazar variety (14938.53 and 16847.06 MJ 

ton–1). Mechanized cultivation of the 

Khazar variety demonstrated a substantial 
energy output of 1498.68 MJ ton–1 of 

renewable biomass energy. The diminishing 

availability of petroleum resources and the 

escalating demand for emission-friendly 
attributes in fossil fuel combustion have 

spurred a surge in research towards clean, 

accessible, and cost-effective energy 
alternatives. Simultaneously, the 

environmental impact associated with 

biodiesel production and combustion has 
gained significant attention in recent years. 

While prior studies have predominantly 

examined production processes and exhaust 

emissions, a holistic evaluation necessitates 
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a thorough investigation spanning from 

farm-to-combustion. Environmental 

analyses that overlook energy consumption 
fail to provide a comprehensive assessment 

of the efficiency of biodiesel production. To 

address this, the CExD methodology has 

emerged as a novel approach for 
quantifying the useful energy consumed 

within systems, a perspective notably 

absent in many biofuel production studies 
(Nabavi-Pelesaraei et al., 2022). The 

environmental impacts of horticultural 

inputs can be assessed using the LCA 

method, which evaluates resources depleted 
and released in the environment. In this 

study, the environmental damages of 

various horticultural crops in Guilan 
province of Iran were analyzed using the 

LCA technique and CExD analysis. Citrus, 

hazelnut, kiwifruit, tea, and watermelon 

cropping systems were compared, with 
hazelnut production showing the highest 

pollution levels. On-Orchard emissions and 

nitrogen fertilizer were found to be major 

contributors to environmental impacts in all 
systems. Hazelnut production also required 

the highest energy input among the crops 

studied. Citrus production was determined 
to have the lowest emissions and was 

recommended as the most sustainable 

option for horticultural crop cultivation. 

Implementing organic fertilizers, upgrading 
equipment, and improving irrigation 

systems could further enhance the 

sustainability of horticultural production 
(Mostashari-Rad et al., 2021). 

 
Table 6. The analysis of CExD shows the energy forms for one ton of paddy in various production 
methods. 

Energy form Unit 
Hashemi variety Khazar variety 

Conventional Mechanized Conventional Mechanized 

Non-renewable, fossil MJ ton–1 21666.32 24537.68 14938.53 16847.06 

Renewable, potential MJ ton–1 640.94 748.76 440.19 506.23 

Non-renewable, 

primary 
MJ ton–1 80.22 75.39 54.05 47.63 

Renewable, biomass MJ ton–1 1594.45 1498.68 1108.20 972.91 

Renewable, water MJ ton–1 776.06 640.14 569.35 429.64 

Non-renewable, metals MJ ton–1 837.60 974.99 570.08 641.94 

Non-renewable, 

minerals 
MJ ton–1 231.23 227.71 156.19 149.33 

 
Various input factors contribute to the 

generation of energy in different forms, as 
depicted in Figure 6 and 7. Electricity and 
machinery play crucial roles in all energy 
forms, with machinery positively 
influencing the production of renewable 
water form. Nitrogen fertilizers notably 
contribute to the non-renewable minerals 
form, while non-renewable fossil energy 
stems from electricity consumption. The 
CExD analysis of paddy production found a 
non-renewable fossil energy utilization rate 
of 35,426.81 MJ ha-1 (Nabavi-Pelesaraei et 
al., 2018). Diesel fuel and natural gas 
combustion significantly contributed to the 
CExD method analysis (Khanali et al., 
2017). Exergoenvironmental aspects in 
various paddy production systems in Iran 
introduced the concept of life cycle cost 
(LCC) and emissions costs as a new factor 
in these scenarios. They evaluated 

environmental life cycle damages and 
found that diesel fuel and nitrogen had the 
most significant impact on resource damage 
in certain systems. On-Farm emissions 
were identified as the largest contributor to 
environmental impact in the surveyed 
systems. The analysis also revealed that 
non-renewable fossil fuel was the main 
energy consumer, with diesel fuel being the 
most substantial form of energy in all three 
systems (Saber et al., 2020). It was 
recognized that direct emissions and field 
operations are significant contributors to the 
environmental effect in organic rice 
systems. Similar research in other crops has 
shown that the use of chemical fertilizers, 
particularly urea, and fossil fuels had the 
most significant effect on GHG emissions 
and global warming potential (Hokazono 
and Hayashi, 2012). 
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Figure 6. The Hashemi variety of paddy production relies on various inputs to consume energy forms for 

different stages of production. 
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Figure 7. The Khazar variety of paddy production relies on various inputs to consume energy forms for 

different stages of production. 

 
Conclusions 

Analyzing the environmental impact of 
paddy cultivation through LCA and CExD 

assessments across different scenarios 

provides a holistic understanding of its 
sustainability. By evaluating energy and 

resource inputs, emissions, and waste 

outputs, we can pinpoint areas for 
improvement and implement more eco-

friendly practices in rice production. This 

data can inform policy decisions to reduce 

the environmental footprint of agriculture 
and promote sustainable practices. The 

analysis revealed that paddy cultivation has 

a significant impact on water use and 
greenhouse gas emissions. The study 

utilized the ReCiPe2016 method to assess 

resource impacts, with conventional and 

mechanized methods showing higher 

impacts for the Hashemi variety compared 

to the Khazar variety. Electricity was found 
to be a major contributor to environmental 

emissions in all categories. The CExD 

method identified seven types of energy, 
with non-renewable fossil energy playing a 

significant role in both cultivation methods 

for the two varieties studied. However, 
mechanized cultivation of the Khazar 

variety showed a notable output of 

renewable biomass energy. Through a 

comprehensive comparison using LCA and 
CExD, we can determine the most 

sustainable practices for paddy cultivation, 

considering a wide range of environmental 
impacts and resource consumption. This 

information is crucial for making informed 

decisions and promoting sustainable 

agricultural practices. 
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