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Water is one of the most essential elements in nature that forms the 

basis of human life and contributes to the economic growth and 

development of societies. Safe water is closely related to 
environmental health and activities. The lives of all the animals on 

our planet depend on water and oxygen. Moreover, sufficient 

Dissolved Oxygen (DO) is crucial for the survival of aquatic animals. 
In the present research, temperature (T) and flow (Q) variables were 

used to predict DO. We used monthly time series and data were 

related to the Cumberland River in the southern United States from 
2012 to 2022. Support Vector Regression (SVR) was employed for 

prediction of the model in both standalone and hybrid forms. The 

employed hybrid models consisted of SVR combined with 

metaheuristic algorithms of Chicken Swarm Optimization (CSO), 
Social Ski-Driver (SSD) optimization, and the Algorithm of the 

Innovative Gunner (AIG). Pearson Correlation Coefficient (PCC) was 

utilized to select the best input combination. Box plots and Taylor 
diagrams were employed in the interpretation of the results. We 

observed that all the four hybrid models achieved good results. Also, 

according to the evaluation criteria, among the models used, SVR-

AIG performed better with the coefficient of determination (R2 = 
0.963), the root mean square error (RMSE =0.644 mg/l), the mean 

absolute value of error (MAE = 0.568 mg/l), the Nash-Sutcliffe 

coefficient (NS = 0.864), and bias percentage (BIAS = 0.001). 
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Introduction 

The development of agricultural and 

industrial activities and the increase in the 
urban wastewater volume have polluted 

rivers so that the quality of these vital 

resources is seriously endangered. Also, we 

sometimes consume water that is 
contaminated to a certain extent (Krishna et 

al. 2020; Forstinus et al. 2016; Ighalo et al. 

2020; Khalil et al. 2019; Dizaji et al. 2020; 
Kisi and Ay, 2012). Dissolved oxygen 

(DO) is one of the most important 

qualitative indicators for river health 

assessment (Dogan et al. 2009). DO is the 
amount of dissolved oxygen in the water as 

an important and effective factor in the life 

of aquatic organisms and indicates water 
pollution (Chapman.1992). High levels of 

DO also cause unfavorable living 

conditions for riverine plants and animals 
(Radwan et al. 2003). Today, small mobile 

devices equipped with membrane electrodes 

are used to measure dissolved oxygen at the 

sampling site. The membrane electrode is 
made of a membrane-based on the 

penetration rate of oxygen molecules. This 

physical method is simple and fast. On the 
other hand, the most accurate method of 

measuring dissolved oxygen is the 

iodometric method. This method is a 
titration method based on the oxidizing 

properties of dissolved oxygen (Ahmed and 

Shah 2017; Yaseen et al. 2018; Diaz and 

Rosenberg.2008; Salcedo-Sanz et al. 2016; 
Afan et al. 2015). Because river water 

quality is affected by various characteristics 

that have complex and nonlinear behavior, 
mathematical models may not perform well. 

Recently, hybrid models that are a subset of 

artificial intelligence (AI) are used to 

estimate river water quality. These AI 
techniques are simple, powerful, and can 

easily control complex nonlinear processes. 

Since these models are non-parametric, 
their main advantage is the lack of need for 

the concept of prediction and the 

relationship between input variables and 
output data (Gocić et al. 2015). A classic 

feature of artificial intelligence is that these 

models are capable of stochastic analysis of 

dynamics, patterns, and features in input 
variables used to simulate groundwater 

variables. Therefore, they are more feasible 

than other conceptual and statistical 

methods (such as experimental approaches 

and physics-based models). In general, AI-
based models can be used for local 

applications. Therefore, models based on 

artificial intelligence have great potential 

for various applications, including 
hydrological and hydrogeological 

phenomena. Many researchers have 

confirmed the potential usefulness of AI 
techniques for simulating river water 

quality (Ross and Stock 2019; Shi et al. 

2019; Li et al. 2020a, b; Adhaileh and 

Alsaade 2021; Asadollah et al. 2021; 
Ahmed and Lin 2021; Guo et al. 2021; Zhu 

et al. 2021; Tiyasha et al. 2021; Huang et al. 

2021; Liu et al. 2021). 
 Alizadeh and Kavianpour (2015) used 

the combined wavelet artificial neural 

network model to predict qualitative 
parameters in Hilo Bay, Pacific and 

concluded that the combined wavelet and 

artificial neural network model performs 

better than the artificial neural network 
alone. Rajaee et al. (2020) combined ANN–

ARIMA, GA–ANN, WANN, WNF, 

WSVR, and WLGP models to estimate the 
dissolved oxygen parameter in river water. 

In their study, Rajaee et al. (2020) gathered 

information, and statistics from 51 
scientific articles during 2016–2000. The 

results showed that the models based on 

wavelet transform (WT) demonstrated 

better performance than the other models 
under study. In addition, the WDVR model 

had more accuracy than other models. 

 Zhu et al. (2021) used WT–ANN, WT–
SVM, WT–MLR, and WT–RF hybrid 

models to predict the dissolved biological 

oxygen in the water of China's Dongjiang 

River. The results showed that hybrid 
models performed better than wavelet 

models. These models covered single and 

hybrid patterns due to the increase of model 
memory that improved their performance. 

In general, according to the above 

research, the reduction in Cumberland 
River water quality—primarily due to the 

presence of regenerative chemicals, 

especially organic matter, and wastewater 

discharge—poses a significant concern, as 
the river is the primary water source for 

various regions, including Tennessee and 
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adjacent areas. In these areas, industrial and 

domestic effluents have caused many 

problems. Therefore, the need to model 
water-soluble oxygen in this river is very 

important to improve its quality. In this 

study, AIG–SVM, SKI–SVM, and CSO–

SVM models were used to estimate 
dissolved oxygen in the Cumberland River, 

Tennessee, based on measured variables at 

the Cumberland station, such as dissolved 
oxygen, flow rate, and temperature. This 

estimation was done based on a monthly 

time scale. 

 

Material and Method 

Case study: Cumberland catchment 

Cumberland is one of the most important 
rivers in the southern United States with a 

length of 1,106 km. The river is in the 

catchment region of southern Kentucky in 
an area of 4700 square kilometers. The 

Cumberland River originates in Lecher 

County in eastern Kentucky on the 

Cumberland Plain and flows into the Ohio 
River in Smithland. The river is located 

between latitudes ″57 ′51 °82 ″22 ′36 °84 

East and latitudes ″50 ′7 °37 ″28 ′52 °38 N 

in Tennessee. Figure 1 shows the position 
of the study station at longitude ″56 ′49 °86 

and latitude ″59 ′10 °36. In this study, for 

the estimations, the data on water-soluble 

oxygen (mg/l), precipitation (mm), flow 
rate (cubic meters per second), and 

temperature (degrees Celsius) collected by 

the Cumberland station during 2006-2016 
were obtained on a monthly basis from the 

Geological Survey of the United States. 

 Also, for modeling, the parameters of 

monthly flow rate (Q), temperature (T), and 
Dissolved Oxygen (DO) in river water, also 

available in the US Geological Survey, for 

the period of 2008-2018 were used. An 
amount of 70% of the data were employed 

for model construction (training course) and 

30% for model validation or evaluation 
(Khosravi et al, 2018). Table (1) shows the 

descriptive statistics of the available 

variables (minimum, maximum, average, 

standard deviation, and skewness) in the 
total dataset used. 

 

 
 

Figure 1. The studied region 

 
Table 1. Statistical specifications of the parameters used 

Parameter 
Training Testing 

Minimum Mean Maximum Minimum Mean Maximum 

Q(m3/s) 1.203 25.692 156.139 4.295 32.347 70.593 

T(0C) 5.33 17.204 28.41 5.62 16.272 26.18 

DO(mg/l) 5.53 9.588 14.96 6.03 9.424 13.02 

 
Methods 

In this study, to simulate the amount of 
dissolved oxygen in the water of the 

Cumberland River, the support vector 

regression model approach was used. Given 
that based on recent findings this model has 

Cumberland 

Station 
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some errors, model adjustment parameters 

were optimized by metaheuristic algorithms 

to reduce the model error. In recent years, 
several studies have investigated the SVR 

hybrid model with meta-heuristic 

algorithms; however, this study employed 

new algorithms that have not been studied 
in hydrological processes aiming to address 

the challenges and limitations of the 

existing model. In addition, a new 
algorithm was introduced to facilitate the 

simulation process and predict the river 

water quality using dependent parameters 

so that the decline of water quality, which 
will cause irreparable damage to surface 

water resources, can be prevented. Given 

that this is one of the most fundamental 
problems in world water issues, this study 

sets out to apply new algorithms including 

creative rifle, black widow spider, ski, and 
chicken swarm to simulate and estimate the 

amount of dissolved oxygen in river water.  

 According to the structure of artificial 

intelligence networks, the most basic step is 
to determine the modeling parameters. 

These parameters are usually determined 

through trial and error in artificial 
intelligence models such as SVR. Many 

factors affect the outcome of trial and error 

and the accuracy of the model prediction. 
Since these parameters are determined 

through trial and error, they generally 

reduce the predictive power of the model. 

Numerous solutions have been proposed by 
various researchers to address this 

fundamental weakness. One of these 

solutions is to combine backup vector 
regression with fuzzy logic. Researchers 

employ another solution to calculate the 

parameters and optimize these parameters 

by meta-heuristic algorithms. Many 
decision problems can be expressed as 

finite optimization problems which feature 

several decision variables subject to a few 
constraints. Hybrid optimization problems 

are usually easy to articulate, but difficult to 

solve. Two categories of algorithms 
employed for solving hybrid problems 

include exact and approximate algorithms. 

Accurate algorithms ensure finding the 

most optimal solution, but the problem is 
that these algorithms do not apply to 

difficult problems and the time required to 

find solutions to difficult problems will 

increase exponentially. Moreover, for most 

difficult problems, the algorithm accuracy 
is not satisfactory. If the optimal answer is 

not achievable using the exact algorithm in 

practice, we turn to the approximate 

algorithm. The approximation algorithm, 
commonly known as heuristic methods, 

seeks an appropriate and near-optimal 

solution. This method shortens the 
computation time compared to the previous 

method but does not ensure providing the 

most optimal solution. Meta-innovation is a 

general framework of algorithms that can 
provide solutions to the same problem with 

minor variation in different problems. Many 

meta-innovative algorithms are available 
such as Genetic Algorithm, Forbidden 

Search Simulation, Ant Society, Particle 

Swarm, Differential Evolution, Harmony 
Search, Artificial Bee Society, Firefly, 

Cuckoo or Frog, Frog Mutation, Invasive 

Weeds, and Insect Competition along with 

gravity, bats, spirals, pollinators, gray 
wolves, social spiders, lions, whales, 

locusts, and so on. Therefore, to optimize 

the model parameters in SVR, this research 
applied new innovative optimizer 

algorithms including creative rifleman, 

black widow spider, ski, and chicken 
swarm, presented in 2021, to solve 

hydrology and water issues for the first 

time. 

 

Support Vector Regression 

The support vector machine is an efficient 

learning system based on the theory of 
constrained optimization that uses the 

inductive principle of structural error 

minimization and leads to an overall 

optimal solution (Vapnik, 1995). In the 
SVR model, a function related to the 

dependent variable Y, which is itself a 

function of several independent variables x, 
is estimated. Like other regression 

problems, it is assumed that the relationship 

between independent and dependent 
variables with an algebraic function such as 

f (x) with some perturbation (allowable 

error (ε)) is determined (Vapnik, 1998) as: 

f(x)=W 
T

.∅(x)+b                                     (1) 
 

y=f(x)+noise                                            (2) 
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where WT is a transcript of the coefficients, 

constant b belongs to the properties of the 

regression function, and ∅ is the kernel 
function based on which the goal is to find 

a functional form for f (x). This is achieved 

by teaching the SVM model through a set 
of data (training set) (Misra et al., 2009). To 

calculate W and b, it is necessary to 

minimize the error function (Equation 3) in 
the SVM-ε model by considering the 

conditions (constraints) in Equations (4) 

and (5) (Hamel, 2009). 

(3) 
1

2
W

T
  .W+C ∑ εi

N
i=1  +C ∑ εi

*N
i=1                   

 (4) 

W
T

. ∅ (Xi)+b-y
i
 ≤ ε+ εi

*    ,                          

(5) 

y
i
-W

T
. ∅ (Xi)-b ≤ ε+ εi  , εi , 

εi
* ≥0   ,   i=1,2,…,N                                   

 
In the above equations, C is an integer and a 

positive number, which determines the 

penalty when an error occurs in model 

training. The kernel function is N (the 
number of instances and the two properties 

εi and εi
∗ are deficient variables. Finally, 

the SVM regression function can be 
rewritten as follows: 

f(x)= ∑ α̅i
N
i=1 ∅(xi)

T. ∅(x)+b                      (6) 

                              

In Equation 6, α̅i is the mean of the 

Lagrangian coefficients. Calculating ∅ (x) 

in its characteristic space can be very 

complex (Yoon et al, 2011). To solve this 

problem, the usual procedure in the SVM 
regression model is to select a kernel 

function as follows: 

   K(XJ ,X)=∅(Xi)
T√ b

2
-4ac                   (7)  

Different kernel functions can be used to 
build different types of SVM-ε. The types 

of kernel functions that can be used in the 

SVM regression model are polynomial 
kernel 1, Radial Base Function (RBF) 

kernel, and linear kernel that are 

respectively calculated by the equations 

given below. Figure 2 shows the structure 
of the backup vector machine model. Given 

that the most widely used kernel functions 

are radial, linear, and polynomial (Basak et 
al, 2007; Vapnik and Chervonenkis, 1991), 

in this study, these three kernel functions 

were used to constitute the vector 

regression model. The parameters of the 
studied kernels C, t, and d converged to the 

optimal values using new ultra-exploration 

algorithms and then, the hybrid model was 

investigated. It is noteworthy that the 
process of backup vector machine 

calculations was performed based on 

coding in MATLAB environment and the 
kernel functions were optimized through 

trial and error. 

k(x,xj)=(t+xi.xj)
d
                                    (8) 

K(x,xi)=exp (-
‖x-xi‖

2

2σ2
)                         (9)  

k(x,xj)=𝑥𝑖 . 𝑥𝑗                                           (10) 

 

Chicken Swarm Optimization  

Chicken swarm optimization is a bio-
inspired algorithm used for single-objective 

optimization (Zvache et al., 2019). This 

algorithm was proposed by Meng et al. 

(2014). In a group of N chickens, we 
distinguish the following numbers: RN, 

HN, CN, and MN, which represent the 

number of roosters, chickens, chickens, and 
hens, respectively. Figure (2) shows the 

flowchart of the chicken swarm algorithm. 

 
The position of each chicken in a D-

dimensional space is expressed according to 

Equation (11): 

𝑥𝑖,𝑗 (𝑖 𝜖 [1 , … , 𝐷]), 𝑗𝜖[1 , … , 𝐷]             (11) 

 

There are three types of chickens in the 
CSO algorithm. Each type of equation has 

its own proper motion. Roosters with the 

best proportions can find food in a wider 

area than those with worse proportions. The 
movement of roosters is obtained through 

Equations (12) and (13): 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖.𝑗

𝑡 ∗ (1 + 𝑟𝑎𝑛𝑑𝑛 (0, 𝜎2))        (12) 

𝜎2 = {
1                           , 𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘

exp (
𝑓𝑘−𝑓𝑖

|𝑓𝑖|+𝜀
)  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

         (13) 

In this relation, Randn (2,0) is a Gaussian 

distribution with mean 0 and standard 

deviation 2, which are very small constants 

used to avoid the error of dividing by zero. 
K is the rooster index that is randomly 

assigned between groups. Roosters are 



Reza Dehghani et al., / Environmental Resources Research 12, 1 (2024)                                                                    36                                                                      

selected and Fi is the proportion of rooster 

Xi. Chickens also follow their group in 

search for food. In addition, they 
accidentally steal food found by other 

chickens, although prohibited by them. The 

superior and dominant chickens in the 

competition for food have advantage over 
more obedient chickens. Mathematically, 

the movement of chickens can be obtained 

using Relations (14), (15), and (16): 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑆1 ∗ 𝑅𝑎𝑛𝑑𝑛 ∗ (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) +

𝑆2 ∗ 𝑅𝑎𝑛𝑑𝑛 ∗ (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 )                    (14) 

𝑆1 = 𝑒𝑥𝑝 (
𝑓𝑖−𝑓𝑟1

|𝑓𝑖|+𝜀
)                                   (15) 

𝑆2 = 𝑒𝑥𝑝(𝑓𝑟2
− 𝑓𝑖)                                 (16) 

where Rand is a random number that is 

evenly distributed between 0 and 1. r1 is a 

rooster indicator and r2 is a chicken (rooster 

or chicken) indicator, both randomly 
selected from the crowd (r1 ≠ r2). Chickens 

explore food around their mother. The 

movement of the chickens is obtained by 

Equation (17). 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 )           (17)  

 

where 𝑥𝑚,𝑗
𝑡  is the position of the mother of 

the i-th chicken so that m ϵ [1, N] and FL is 

a parameter that indicates how fast the 
chicken follows its mother. To consider the 

differences between different chickens, FL 

is randomly selected in the range [0, 2]. 

 

 
Figure 2. Flowchart of chicken swarm algorithm (Priyadarshi et al., 2017) 
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The Algorithm of the Innovative Gunner 

(AIG) 
The algorithm of the innovative gunner is 
one of the very new meta-innovative 

optimization algorithms proposed by 

Pijarski & Kacejko (2019). The steps of this 

algorithm are summarized as follows: 
1-Start the model at a starting point (the 

initial value for the first bullet 

determined randomly); 
2-Determine the firing distance (firing 

distance of the bullet from the gun to the 

target point); 

3-Calculate the produced bullet (the second 
bullet in the third stage taken from the 

first bullet); 

4-Check the possibility of a bullet hitting 

the target (the location shot - did 

thebullet hit the target correctly?); 
5-Select N random bullets as the main 

bullets (in case of hitting the target 

correctly); 

6-Check and update the position where the 
bullet has hit the target (if the bullet hits 

the center of the target, the termination 

condition will be fulfilled and the work 
will be completed; but if it does not hit 

the target, the initial value must be 

redetermined); 

7- Determine the best registered position; 
8- Finish. 

Figure (3) shows the general flowchart of 

the algorithm of the innovative gunner.
 

 
Figure 3. General flowchart of the AIG 

 
Social Ski-Driver (SSD) optimization 

algorithm 

In what follows, a novel optimization 

algorithm is proposed, which is called 
Social Ski-Driver (SSD) algorithm. The 

behavior of SSD was inspired by many 

different evolutionary optimization 
algorithms. Its name implies the fact that its 

stochastic exploration somehow resembles 

the paths that ski-drivers take downhill. 
SSD has some parameters a brief 
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description of which is given in the 

following: 

 Positions of the agents (Xi ϵ Rn) are used 
to calculate the objective function at 

each location with n representing the 
dimension of the search space, 

 Previous best position (Pi): The fitness 

value for all agents is calculated using 

the fitness function. The fitness value for 

each agent is then compared with its 
current position and the best position is 

stored. This is like the PSO algorithm 

(Poli et al., 2007). 

The main objective of the SSD is to search 
in a space for optimal or near-optimal 

solutions. The number of parameters 

needed to be optimized determines the 

dimension of that space. In SSD, the 
positions (Xi) of agents are randomly 

initialized, where the number of agents is 

determined by the user. 

 

 
 

Figure 4. Flowchart of the SSD algorithm (Tharwat et al., 2020) 

 
Evaluation Criteria and Comparison of 

Models 

Certain criteria are used in any project to 

evaluate the efficiency of modeling. In the 
present study, different statistical criteria 

were employed to evaluate the efficiency of 

the models, including the coefficient of 
determination (R2), Root Mean Square 

Error (RMSE), Mean Absolute error 

(MAE), Nash-Sutcliffe Efficiency (NSE) 

coefficient, and Bias (Chai & Draxler, 
2014; Legates & McCabe, 1999). The value 

of R2 is in the [0-1] range and the closer it 

gets to one, the higher the prediction ability 
of the model will be and vice versa. Zero 

suggests that the model does not define the 
variations of the response data around the 

mean value, and one means that it defines 

all of them around the mean (Nagelkerke, 
1991). Nash-Sutcliffe Efficiency (NSE) 

coefficient is a normalized statistic that 

defines the relative value of residual 
variance in comparison with the variance of 

the measured data (Nash & Sutcliffe, 1970; 

Moriasi et al., 2007). The NSE ranges 

between -∞< 𝑁𝑆𝐸 < 1 and the more its 
value approaches one, the more optimized 

the answer will be. The values between zero 

and one are generally accepted as the 

acceptable performance ratings and NSE≪0 
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suggests that the mean observational values 

have higher predictive power than the 

estimated values, implying unacceptable 
performance of the model (Suie et al., 

2020). This criterion was recommended by 

ASCE (1993) and its use is very common, 

because it provides a vast array of 
information regarding the reported values 

(ASCE, 1993). The use of this criterion has 

been highly welcomed in different scientific 
fields and numerous researchers throughout 

the world are benefiting from it (Sevat & 

Dezetter, 1991; Kesgin et al., 2020). 

Percentage of bias (PBIAS) measures the 
orientation of computational (simulated) 

data to their smaller or larger observational 

counterparts (Dabanli & Sen, 2018). The 
PBIAS value can be positive, negative, or 

zero. Zero suggests the optimal value and 

low-magnitude values suggest precision of 
the model during the simulation process. 

Positive and negative values denote the 

underestimation and overestimation of the 

model, respectively (Gupta et al., 1999). 
This criterion is favored more by the 

scholars in this field and applied by nearly 

all of them. It is also prevalent in most 
hydrological, water resource management, 

and geological studies (Musi et al., 2019; 

Pengxin et al., 2019). The above-mentioned 
criteria are derived by Equations (19-23) 

presented here. 

𝑅2 = [
∑ (𝑀𝑜𝑖−𝑀̅0)(𝑀𝑒𝑖−𝑀̅𝑒)𝑛

𝑖=1

√∑ (𝑀𝑜𝑖−𝑀̅0)2.∑ (𝑀𝑒𝑖−𝑀̅𝑒)2𝑛
𝑖=1

𝑛
𝑖=1

]

2

, 0 ≤ 𝑅2 ≤ 1 

(18) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑒𝑖 −𝑛

𝑖=1 𝑀𝑜𝑖 )2 0 ≤

𝑅𝑀𝑆𝐸 ≤ +∞                                       (19) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑀𝑒𝑖 − 𝑀𝑜𝑖 | , 0 ≤ 𝑀𝐴𝐸 ≤𝑛

𝑖=1

+∞                                                  (20) 

NSE=1- 
∑ (𝑀𝑒𝑖−𝑀𝑜𝑖)2𝑛

𝑖=1

(𝑀𝑒𝑖−𝑀̅𝑒)2 , −∞ < 𝑁𝑆𝐸 < 1 (21) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑀𝑜𝑖−𝑀𝑒𝑖)𝑛

𝑖=1

∑ 𝑀𝑒𝑖
𝑛
𝑖=1

× 100 , −100 ≤

𝑃𝐵𝐼𝐴𝑆 ≤ 100                                  (22) 

 

Results and Discussion 
One of the most important steps in 

modeling is choosing the right combination 

of input variables. In artificial intelligence 
models, selecting appropriate and effective 

initial input in order to teach the nature of 

the mechanism governing the phenomenon 

is an essential step toward improved 
performance (Satari et al., 2016; Nourani et 

al., 2016). In this study, in order to simulate 

the amount of dissolved oxygen in river 
water, monthly data of the Cumberland 

station during the statistical period of 2008 

to 2018 were used. For modeling, the 

parameters of flow rate (Q) and temperature 
(T) in time steps t, t-1, and t-2 were used as 

input and the amount of Dissolved Oxygen 

(DO) as the output parameter of the model. 
It should be noted that 80% of the data for 

modeling and the remaining 20% for testing 

were randomly selected to model a wide 
range of data types (Kisi and Karahan, 

2006; 2002 Nagy et al). The results of the 

models used are presented below. 

 
Table 2. Combinations of input variables for selecting the best model 

Number Input Output 

1 Q(t) DO(t) 

2 Q(t),T(t) DO(t) 

3 Q(t),T(t),Q(t-1) DO(t) 
4 Q(t),T(t),Q(t-1), T(t-1) DO(t) 

5 Q(t),T(t),Q(t-1), T(t-1),Q(t-2) DO(t) 

6 Q(t),T(t),Q(t-1),T(t-1),Q(t-2), T(t-2) DO(t) 

 
 In this study, to simulate the amount of 

dissolved oxygen in the Cumberland River, 
new models and algorithms were analyzed 

with an observational dataset and the 

highest efficiency was selected for further 

modeling and analysis. This step had six 

patterns that were selected as the best 

patterns of input compounds, which are 
described in Table (2). Also, for each 

hybrid model including SVR-AIG, SVR-

SSD, and SVR-CSO, all the six 

combinations were used in the training and 
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testing stages (Khosravi et al, 2016). Recent 

studies have often evaluated the 

performance of AI networks relative to each 
other based on R2 or RMSE. The main goal 

of artificial intelligence systems is to reduce 

the estimation error. In this regard, in the 

present research, the criteria for 
determining the superiority of models were 

RMSE and R2. These two indicators have 

an inverse relationship with each other and 
decreasing RMSE increases R2. It can 

generally be said that adding variables with 

high CC in determining the output of a 

model increases the predictive power. As 
can be seen in Table (3), the combined 

SVR-AIG model had lower error than the 

other hybrid models under study, which can 

be due to not getting stuck in the local 
optimal points and faster convergence to the 

most optimal training parameters of the 

SVR model. 

 
Table 3. Selection of the optimal input combination based on RMSE 

Model 
Evaluation 

Criteria 
Phase 1 2 3 4 5 6 

AIG-SVM RMSE(mg/l) 
Training 0.784 0.753 0.736 0.723 0.708 0.693 

Testing 0.727 0.711 0.694 0.681 0.665 0.644 

SKI-SVM RMSE(mg/l) 
Training 0.934 0.918 0.903 0.891 0.884 0.878 

Testing 0.901 0.886 0.871 0.863 0.852 0.843 

CSO-SVM RMSE(mg/l) 
Training 0.955 0.941 0.932 0.917 0.897 0.881 

Testing 0.928 0.911 0.893 0.884 0.877 0.864 

 

 In Table (3), given the different structure 
of each model, the composition of the 

optimal input variables is different for the 

models. For each model, RMSE values 

were estimated in both testing and training 
phases. The lowest amount of RMSE was 

selected in the test to comment on the 

accuracy of the models. As can be seen 
from Table (3), the sixth model had the best 

performance among all with the lowest 

RMSE and this was due to the increase in 
the number of input parameters (Dehghani 

et al, 2020). With normalization of data in 

the range of zero to one, the error was 

calculated very accurately. Also, given that 
the hybrid pattern 6 included more effective 

parameters or variables, the error was 

reduced by the same amount and therefore, 
it was preferable to other patterns. As the 

temperature of the river water increased, so 

did the dissolved oxygen in the water. 

Reduction in light also reduced the amount 
of oxygen released by plants. The reason is 

that that if light does not reach the plants 

completely, their production of oxygen will 
stop, and the existing bacteria will consume 

oxygen. On the other hand, with increasing 

river discharge, water concentration due to 

the entry of effluents does not increase and 
water-soluble oxygen does not decrease. 

 
Model performance evaluation 
In this study, novel developed models 

(SVR-SSD, SVR-CSO, SVR-AIG) were 

used to simulate the amount of dissolved 
oxygen in the water of the Cumberland 

River in the United States. First, different 

kernels including Radial Base Function 

(RBF), Polynomial (Poly), and Linear 
(Line) were studied. RBF was selected 

according to the evaluation indicators in 

combination with modern meta-heuristic 
algorithms. Then, by combining the support 

vector regression model with meta-heuristic 

algorithms, hybrid models were obtained. 
Finally, the mentioned evaluation indicators 

were utilized to analyze the hybrid models 

in relation to each other as well as to 

examine the series of observational data 
relative to the computational models of the 

diagrams. Time series changes, distribution, 

error rate, box plot, and violin and Taylor 
diagrams were used. To evaluate the 

studied models accurately, after 

normalizing the observational data, 

optimizing the parameters, and setting up 
the support vector regression model (C, t, 
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and d), R2 and RMSE indices, MAE, NSE, 

and PBIAS were used. 

 In summary, after selecting the best 
input combination for each model, the 

results of hybrid models for simulating 

dissolved oxygen in the observed river 

water, as given in Table 4, show that the 
Support Vector Regression-Algorithm of 

the Innovative Gunner (SVR-AIG) had 

better performance than other hybrid 
models, which were respectively, Support 

Vector Regression-Chicken Swarm 

Optimization (SVR-CSO), and Support 

Vector Regression-Social Ski-Driver (SVR-

SSD). For the SVR-AIG model, we had R2 
= 0.963, RMSE = 0.644 (mg / l), MAE = 

0.568 (mg / l), NS=0.864, and BIAS = 

0.001 in the testing phase. In general, it can 

be said that the SVR-AIG model had the 
best performance, while the SVR-CSO 

model had the weakest performance. The 

BIAS value was also positive for the study 
area, which meant underestimation by the 

model. 

 
Table 4. Performance evaluation of hybrid models in simulating dissolved oxygen 

Model 

Training Testing 

R 
RMSE 
(mg/l) 

MAE 
(mg/l) 

NSE PBIAS R 
RMSE 
(mg/l) 

MAE 
(mg/l) 

NSE PBIAS 

AIG-SVM 0.950 0.693 0.512 0.935 0.001 0.963 0.644 0.568 0.864 0.001 

SKI-SVM 0.918 0.878 0.641 0.873 0.003 0.936 0.843 0.767 0.821 0.003 

CSO-SVM 0.914 0.881 0.655 0.864 0.003 0.928 0.864 0.775 0.815 0.003 

 
 Figure 6 shows the time series variation 

diagram and the distribution of 

observational and computational values. It 
shows good accuracy in estimating 

minimum and not much acceptable 

accuracy for maximum values. In addition, 

according to the Y = X distribution 
diagram, all the four hybrid models 

estimated computational values close to 

observational values, while SVR-AIG had 
better performance than others due to the 

equality of observational and computational 

values. 
 In Figure 7, the diagram for increase in 

the accuracy of the studied hybrid models 

compared to the single model shows that 

the SVR-AIG, SVR-CSO, and SVR-SSD 
models lead to more computational 

accuracy by 6.52%, 1.90%, and 1.75%, 

respectively, proving the higher efficiency 
of the hybrid models. 

 The mentioned relative superiority of the 

hybrid models lies in the lower number of 
their outlier data, the measurement accuracy 

of the observational parameters, the 

operator’s precision of measurements, and 

favorable quality of the data. However, the 
evident point is that prediction by different 

machine learning models may lead to 

different results considering their various 
datasets and structures of algorithm. That is, 

any algorithm is a different and complex 

structure with its own advantages and 

disadvantages. In other words, some models 
perform differently with various problems 

and conditions due to multiple reasons. 

Besides, different studies conducted 

worldwide illustrate that there is no global 
index to prove absolute superiority of a 

model to others. More clearly, an algorithm 

may lead to the best optimal solution to one 
problem and the worst solution to another. 

Moreover, such solutions may be 

accompanied by low or high noise due to 
different factors such as the nature and type 

of the problem; structure and configuration 

of the model; proper definition of the 

problems, existing parameters, and 
borderline conditions; and low or high 

number of the data and their different 

qualities. Another significant issue should 
be noted concerning the differences 

between single and hybrid models. The 

studies being undertaken worldwide 
suggest that there is no globally accepted 

mechanism and standard procedure 

regarding the superiority of hybrid models 

over single ones. However, different studies 
suggest that hybrid models generally 

improve the performance of standalone 

models, which is in line with the findings of 
the present study. 
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 The box diagram of the amount of 

dissolved oxygen in river water in Figure 8 

shows that the SVR-AIG model properly fits 
with the observed maximum dissolved 

oxygen. Also, SVR-CSO, and SVR-SSD 

models are behind in terms of compatibility, 

in order. The same result was observed in 
predicting the minimum dissolved oxygen. 

According to Figure 7 and the results of the 

box plot diagram, it can be stated that 

although SVR is one of the smart and 
accurate models, it cannot predict the 

maximum values well. However, when 

combined with hybrid algorithms such as 

AIG, its performance in predicting 
maximum values is greatly improved. 

 

 
Figure 6. Scatter diagram and temporal variations of the observational and  

computational data for the three observation wells 
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Figure 7. Correlation diagrams of the studied models compared to the single mo 

 

 
 

Figure 8. Box plot for the measured and predicted values 

 
Conclusion 

In general, it can be said that the developed 

models for simulating dissolved oxygen in 

the water of the Cumberland River in the 
United States achieved desirable prediction 

results. The results showed that the higher 

the number of effective parameters 
(dependent variables) in hand, the better the 

network performance. Also, the higher the 

input to the network, the higher the 
efficiency and accuracy of the model. 

 In this study, hybrid models based on 

support vector regression were used to 

simulate dissolved oxygen in river water. 
Studies by various researchers around the 

world show that support vector regression 

generally does not perform well for 
estimating hydrological phenomena due to 

the nature of trial and error in estimating 

kernel setting parameters. In other words, it 

is easier to calculate the parameters of 

setting kernels in the support vector 

regression model based on trial-and-error 

method and this is a weakness for the 
model. Our results showed that hybrid 

models had acceptable performance in 

increasing the estimation ability of the SVR 
model by 1.5 to 6.5%.  

 Also, according to the evaluation 

criteria, it was concluded that all the four 
models could accurately estimate the 

relatively high level of dissolved oxygen in 

river water. Meanwhile, the SVR-AIG 

model showed more accuracy and less error 
than the SVR-BWO, SVR-CSO, and SVR-

SKI models. 

 Overall, the results of this study 
indicated the superiority of the AIG to other 

algorithms (based on correlation and RMSE 

criteria). This advantage goes back to the 
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powerful internal structure of this algorithm 

and the use of primary and secondary 

parameters, cost reduction function, and 
time saving and more effective convergence 

in achieving the optimal solution. In 

general, it can be said that most of the 

algorithms such as Chicken Swarm 
Optimization (CSO), and Social-Ski Driver 

(SSD) focus on the cost function and 

primary criteria, while in the AIG, in 
addition to the above-stated items, 

secondary parameters are also considered. 

This has a significant effect on the optimal 

results of the model. Also, the powerful 
structure of the AIG makes it possible to 

better converge to the optimal answer and 

local minima. In simpler terms, it can be 
said that the effect of these secondary 

parameters increases the speed of 

convergence. Also, their performance along 

with other factors reduces the search 
amplitude, resulting in better and faster 

convergence, because the more limited the 

search amplitude, the faster and more 

accurate the achievement of the optimal 
answer and the faster the convergence. 

Overall, this study showed that the use of 

SVR-AIG model could be effective in 
estimating dissolved oxygen in river water. 

This model can be useful in facilitating the 

development and implementation of surface 

water management strategies, which is a 
step forward in making management 

decisions to improve the quantity of surface 

water resources. 
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