Correlating sentinel-2-derived NDVI with the amount of visible color changes and seed fall of Glasswort (Salicornia herbacea L.) during it's ripening stage

Document Type : Research Paper

Authors

1 Professor, Department of Rangeland Management, College of Range and Watershed Management, Gorgan University of Agricultural Sciences and Natural resources, Gorgan, Iran

2 Professor, Department of Forest Engineering, Faculty of Forestry, Bursa Technic University, Bursa, Turkey

3 Ph.D., Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran

Abstract

Glasswort (Salicornia herbacea) is an annual succulent plant that grows widely around intertidal zone of Gomishan Lagoon in eastern boarders of the Caspian Sea in Iran. Due to its medicinal, industrial, and economic values, tendency of its plantation is growing in recent years. One of the challenges to manage a glasswort farm is to know the appropriate date to harvest since glasswort seeds ripe quickly and seed fall happens considerably by little shake. One way of defining appropriate harvesting date can be found through correlating the amount of visible greenness of the plant, and it's ripening stage with NDVI values derived from remote sensing imageries . This experimental research was conducted to answer this problem by relating the changes in Glasswort visually estimated color classes and its amount of seedfall to the amount of Normalized difference Vegetation Index (NDVI) values that were obtained from Sentinel-2 remotely sensed imagery during the seedfall period of Glasswort community either in the field or in its natural habitat. The maximum NDVI values of 41 Sentinel-2 images during 2018-2020 within Glasswort phenological period were extracted and were correlated with the color class of the plant and the weight of seedfall in sample plots. Results showed a strong correlation between NDVI and brownness color class of the plant (R2=0.80) and a strong negative correlation with amount of its seed fall (R2=-0.83).

Keywords

Main Subjects


Abdal, M.S. 2009. Salicornia production in Kuwait. World Applied Sciences Journal. 6(8), 1033-1038.
Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., and Ojeda, H. 2008. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture. 9(5), 285-302.
Sepehry, A., and Hassanzadeh, H. 2004. Application limit of Landsat ETM images to detect Saxaul plant community in desert ecosystems, Proc. SPIE 5232, Remote Sensing for Agriculture, Ecosystems, and Hydrology V, (24 February 2004) https://doi.org/10.1117/12.507910
Atzberger, C. 2013. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote sensing. 5(2), 949-981.
Begue, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., and PD, F., R., and R Verón, S. 2018. Remote sensing and cropping practices: A review. Remote Sensing. 10(1), p.99.
Belgiu, M., and Csillik, O. 2018. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing  of Environment.  204,509–523. 
Bibi, F., Strobel, G.A., Naseer, M.I., Yasir, M., Khalaf  Al-Ghamdi, A.A., and Azhar, E.I. 2018. Microbial flora associated with the halophyte–salsola imbricate and its biotechnical potential. Frontiers in microbiology. 9, p.65.
Carrillo, E., Matese, A., Rousseau, J., and Tisseyre, B. 2016. Use of multi-spectral airborne imagery to improve yield sampling in viticulture. Precision Agriculture. 17(1), 74-92.
Boori, M.S., Choudhary K., and Kupriyanov, A.V.  2020. Crop growth monitoring through Sentinel and Landsat data based NDVI time-series. Computer Optics. 44(3),409-419.
d'Andrimont, R., Taymans, M., Lemoine, G., Ceglar, A., Yordanov, M., and Velde, M. 2020. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series. Remote Sensing  of Environment.15, 239-250.
Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle O., Inglada, J., Nicola, L., and Rabaute, T. 2019. Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the sen2-agri automated system in various cropping systems around the world. Remote Sensing of Environment. 221,551–568.
Devaux, N., Crestey, T., Leroux, C., and Tisseyre, B. 2019. Potential of Sentinel-2 satellite images to monitor vine fields grown at a territorial scale. OENO One, 53(1).
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., and Meygret, A. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment. 120, 25-36.
Europe’s Copernicus Website. 2018. Available online:https://scihub.copernicus.eu.
Hakimzadeh Ardakani, M., Cheshmberah, F., and Mokhtari, M. 2017. Investigating the Effects of Land Use Changes on Trend of Desertification Using Remote Sensing (Case Study: Abarkooh Plain, Yazd, Iran).Journal of Rangeland Science. 7(4), 348-360.
Hall, A., Lamb, D.W., Holzapfel, B.P., and Louis, J.P. 2011. Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture. 12(1), 103-117.
Immitzer, M., Vuolo, F., and Atzberger, C. 2016. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing. 8(3), p.166.
Johnson, L.F.2003. Temporal stability of an NDVIā€LAI relationship in a Napa Valley vineyard. Australian Journal of Grape and Wine Research. 9(2), 96-101.
Jolly, B., Dymond, J., Shepherd, J., Greene, T., and Schindler, J. 2022. Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery. Remote Sensing. 14, 1573.  https://doi.org/10.3390/rs14071573
Kam, M., Mohammad Ismaili, M., Sataran, A., and Saburi, H. 2014.Comparison of soil seed bank in protected area and under grazing in Gomishan rangelands. Plant Ecosystem Protection. 2(15), 55-70.
Karimi, Z. 2010. Study of flora of vegetation of Gomishan International Lagoon, Iranian Journal of Biology. 23(3), 436-447.
Khilola, A., Nizom, F., and Laszlo, M. 2022. Time-series analysis of Sentinel-2 satellite images for sunflower yield estimation, Smart Agricultural Technology. 3, 2772-3755.
Khoirunnisa, F., Supriatna, S., and Wibowo, A., 2020. Using NDVI algorithm in Sentinel-2A imagery for rice productivity estimation (Case study: Comparing sub-district, Subang Regency, West Java) IOP Conf. Ser. Earth Environment Science. 481 012064
Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R., and Gioli, B. 2015. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing. 7(3), 2971-2990.
Moving average. 2020. In Wikipedia. Retrieved from: https://en.wikipedia.org/wiki/Moving_average
Narin, O.G., and Abdikan, S. 2022. Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images. Geocarto International. 37(5),1378–1392.
Nasrallah, A., Baghdadi, N., Mhawej, M., Faour, G., Darwish, T., Belhouchette, H. and Darwich, S., 2018. A novel approach for mapping wheat areas using high resolution Sentinel-2 images. Sensors. 18(7), p.2089.
Nodehi N., Sepehry A., and Mokhtarpour, H. 2021. Effect of Harvesting Date on Seed Germination and Seed Oil Production of Salicornia herbacea L. (Case Study: Gomishan Lagoon, Gorgan, Iran). Journal of Rangeland Science. 11(2), 196-207. 
Normalization, 2020. Retrieved from: https://en.wikipedia.org/wiki/Normalization (statistics)
Parra, M., Parra, L., Mostaza-Colado, D., Mauri, P.V., and Lloret, J. 2020. Using Satellite Imagery and Vegetation Indices to Monitor and Quantify the Performance of Different Varieties of Camelina Sativa. GEOProcessing 2020: The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services. Pp 42-47. ISBN: 978-1-61208-762-7
Patel, S. 2016. Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate.  Biotech. 6(1), 104.
Probert, R.J., 2000. The role of temperature in the regulation of seed dormancy and germination. Seeds: The Ecology of Regeneration in Plant Communities. 2, 261-292.
Rahman, M.M., Kim, M.J., Kim, J.H., Kim, S.H., Go, H.K., Kweon, M.H., and Kim, D.H. 2018. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharmaceutical Biology. 56(1), 183-191.
Rhee, M.H., Park, H.J., and Cho, J.Y. 2009. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. Journal of Medicinal Plants Research. 3(8), 548-555.
Seo, H.N., Jeon, B.Y., Yun, A.R., and Park, D.H. 2010. Effect of glasswort (Salicornia herbacea L.) on microbial community variations in the vinegar-making process and vinegar characteristics. Journal of Microbiology and Biotechnology. 20(9), 1322-1330.
Shin, M.G., and Lee, G.H. 2013. Spherical granule production from micronized saltwort (Salicornia herbacea) powder as salt substitute. Preventive Nutrition and Food Science. 18(1), p.60.
Shuang, Li., Liang, X., Yinghong, J., Hang, Y., X, L., and Xiaobin, G. 2021. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation 105, pages 102640.
Simpson, J. A., and Weiner, E. S. C. 1989. The Oxford English Dictionary. Oxford: Clarendon Press; Oxford. New York: Oxford University Press,.
Taddei, R. 2010. Maximum Value Interpolated (MVI): A Maximum Value Composite method improvement in vegetation index profiles analysis. Pages 2365-2370  
Tuszynska, J., Gatkowska, M., Wrobel, K., and Jagiello, K. 2018. A pilot study on determining approximate date of crop harvest on the basis of Sentinel-2 satellite imagery. Geoinformation. 10, 1-10.
Van Tricht, K., Gobin, A., Gilliams, S., and Piccard, I. 2018. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium. Remote Sensing.  10,1642. 
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.F., and Ceschia, E. 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment. 199, 415-426.
Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A.K., Wang, T., Zurita-Milla, R., Oosterbeek, K., O’Connor, B., and Paganini, M. 2018. Vegetation phenology from sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment. 215,517–529.
Xueying, Li., Wenquan, Z., Zhiying, X., Pei, Z., Xin, H., Lixin, S., and Zheng, D. 2021. Assessing the Effects of Time Interpolation of NDVI Composites on Phenology Trend Estimation. Remote Sensing. 13, 5018.