Comparative analysis for energy technique and life cycle assessment approach of triticale production with phosphorus solubilizing bacteria

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Associate Professor, Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 M.Sc., Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

4 Professor, Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract

The present article emphasizes the use of phosphorus solubilizing bacteria to support sustainable agriculture. Energy and environmental indicators were significantly affected by the management method of triticale production. The operational plots in Agricultural Institute of Golestan Province, Iran, include the plot without the use of basic fertilizer and the use of phosphate solubilizing bacteria (A1) and the plot with the use of triple superphosphate fertilizer at the rate of 50 kg per hectare (A2). Analysis of energy consumption provided significant comparisons. Energy ratio, energy productivity, energy intensity and net energy gain were calculated using standard equations. The lower input energy (7586.11 MJ ha–1) and the higher output energy (10265.06 MJ ha–1) of A1 indicated the appropriate energy ratio of A1 (1.35). Environmental impact management in the agricultural sector is a key factor for the food production chain. Life cycle assessment of triticale product was done by ReCiPe2016 method. The environmental emissions of A1 in the categories of damage to human health, ecosystem quality and resources were lower than A2. Diesel fuel and chemical fertilizer consumption are managed by cultivation conditions by phosphorus solubilizing bacteria. The adverse effects of inputs in A1 conditions on energy consumption and environmental emissions are less visible.

Keywords

Main Subjects


AghaAlikhani, M., Kazemi-Poshtmasari, H., and Habibzadeh, F. 2013. Energy use pattern in rice production: A case study from Mazandaran province, Iran. Energy Conversion and Management. 69, 157-162.
Alluvione, F., Moretti, B., Sacco, D., and Grignani, C. 2011. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy. 36(7), 4468-4481. ‏
Araujo, J., Urbano, B., and Gonzalez-Andres, F. 2020. Comparative environmental life cycle and agronomic performance assessments of nitrogen fixing rhizobia and mineral nitrogen fertiliser applications for pulses in the Caribbean region. Journal of Cleaner Production. 267, 122065.
Badger, P. C. 1999. CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 3 Biomass Engineering, Part 3.3 Solid Fuels.
Balda, M. C., and Kawajiri, K. 2020. The right crops in the right place for the food-energy nexus: Potential analysis on rice and wheat in Hokkaido using crop growth models. Journal of Cleaner Production. 263, 121373.
Bhunia, S., Karmakar, S., Bhattacharjee, S., Roy, K., Kanthal, S., Pramanick, M., and Mandal, B. 2021. Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices. Energy. 236, 121499.
Bielski, S., Dubis, B., and Jankowski, K, 2015. The energy efficiency of production and conversion of winter triticale biomass into biofuels. Przemysl Chemiczny. 94(10), 1798-1801. ‏
Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy. 20(3), 265-279.
Brentrup, F., and Pallière, C. 2008. GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In Proceedings-international fertiliser society (No. 639, pp. 1-25). International Fertiliser Society. ‏ ‏
IPCC, I. P. O. 2006. Guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan. ‏
Dalgaard, T., Halberg, N., and Porter, J. R, 2001. A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems & Environment. 87(1), 51-65. ‏
Dijkman, T. J., Basset-Mens, C., Anton, A., and Nunez, M. 2018. LCA of Food and Agriculture. In Life Cycle Assessment (pp. 723-754). Springer, Cham. ‏
Frischknecht, R., Wyss, F., Busser Knopfel, S., Lützkendorf, T., and Balouktsi, M. 2015. Cumulative energy demand in LCA: the energy harvested approach. The International Journal of Life Cycle Assessment. 20(7), 957-969. ‏
Habibi, E., Niknejad, Y., Fallah, H., Dastan, S., and Tari, D. B. 2019. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environmental monitoring and assessment. 191(4), 1-23. ‏
Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., and Zelder, O. 2005. Biotechnological production and applications of phytases. Applied microbiology and biotechnology. 68(5), 588-597.
He, X., Qiao, Y., Liang, L., Knudsen, M. T., and Martin, F. 2018. Environmental life cycle assessment of long-term organic rice production in subtropical China. Journal of Cleaner Production. 176, 880-888. ‏
Houshyar, E., and Grundmann, P. 2017. Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy. 122, 11-24. ‏
ISO, I, 2006. ISO 14040 international standard. Environmental Management-Life Cycle Assessment-Principles and Framework. International Organisation for Standardization.
Jankowski, K. J., Sokólski, M. M., Dubis, B., Załuski, D., and Szempliński, W. 2020. Sweet sorghum-Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. European Journal of Agronomy. 119, 126119. ‏ ‏
Jiang, Z., Zheng, H., and Xing, B. 2021. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of the total Environment. 760, 143342.
Jørgensen, J. R., Deleuran, L. C., and Wollenweber, B. 2007. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production. Biomass and Bioenergy. 31(5), 308-317. ‏
Kaur, N., Vashist, K. K., and Brar, A. S. 2021. Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes. Energy. 216, 119286.
Kazemi, H., Shahbyki, M., and Baghbani, S. 2015. Energy analysis for faba bean production: A case study in Golestan province, Iran. Sustainable Production and Consumption. 3, 15-20. ‏
Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S., and Rasheed, M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Science. 1(1), 48-58. ‏
Khan, S., Khan, M. A., and Latif, N. 2010. Energy requirements and economic analysis of wheat, rice and barley production in Australia. Soil and Environment. 29(1), 61-68. ‏
Kosutic, S., Filipovic, D., Gosodaric, Z., Husnjak, S., Kovacev, I., and Copec, K. 2005. Effects of different soil tillage systems on yield of maize, winter wheat and soybean on albic luvisol in North-West Slavonia. Journal of central European agriculture. 6(3), 241-248.
Kumar, R., Sarkar, B., Bhatt, B. P., Mali, S. S., Mondal, S., Mishra, J. S., and Raman, R. K. 2021. Comparative assessment of energy flow, carbon auditing and eco-efficiency of diverse tillage systems for cleaner and sustainable crop production in eastern India. Journal of Cleaner Production 293, 126162. ‏
Lynch, J. P., and Brown, K. M. 2012. New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences. 367(1595), 1598-1604.
Martinek, P., Vinterova, M., Buresova, I., and Vyhnanek, T. 2008. Agronomic and quality characteristics of triticale (X Triticosecale Wittmack) with HMW glutenin subunits 5+ 10. Journal of Cereal Science. 47(1), 68-78. ‏
Mohammadi, A., Rafiee, S., Mohtasebi, S. S., and Rafiee, H. 2010. Energy inputs–yield relationship and cost analysis of kiwifruit production in Iran. Renewable energy. 35(5), 1071-1075. ‏
Moitzi, G., Szalay, T., Schüller, M., Wagentristl, H., Refenner, K., Weingartmann, H., and Gronauer, A. 2013. Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria. Agricultural Engineering International: CIGR Journal. 15(4), 94-101. ‏
Muurinen, S., Slafer, G. A., and Peltonen‐Sainio, P. 2006. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions. Crop Science. 46(2), 561-568. ‏
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., and Taromi, K, 2014. Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in Agriculture, Environment and Food.7(4), 155-162. ‏
Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., and Chau, K. W. 2019. Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. Journal of Cleaner Pproduction. 217, 742-756.
Naiman, A. D., Latrónico, A., and de Salamone, I. E. G. 2009. Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. European Journal of Soil Biology. 45(1), 44-51. ‏
Nemecek, T., Dubois, D., Huguenin-Elie, O., and Gaillard, G. 2011. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems. 104(3), 217-232.
Niero, M., Ingvordsen, C. H., Jørgensen, R. B., and Hauschild, M. Z. 2015. How to manage uncertainty in future Life Cycle Assessment (LCA) scenarios addressing the effect of climate change in crop production. Journal of Cleaner Production. 107, 693-706. ‏
Noya, I., González-García, S., Bacenetti, J., Arroja, L., and Moreira, M. T. 2015. Comparative life cycle assessment of three representative feed cereals production in the Po Valley (Italy). Journal of Cleaner Production. 99, 250-265. ‏
Qiao, Y., Miao, S., Han, X., You, M., Zhu, X., and Horwath, W. R. 2014. The effect of fertilizer practices on N balance and global warming potential of maize–soybean–wheat rotations in Northeastern China. Field Crops Research. 161, 98-106. ‏
Quilty, J. R., McKinley, J., Pede, V. O., Buresh, R. J., Correa Jr, T. Q. and Sandro, J. M. 2014. Energy efficiency of rice production in farmers’ fields and intensively cropped research fields in the Philippines. Field Crops Research. 168, 8-18.
Rafiee, S., Avval, S. H. M., and Mohammadi, A. 2010. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy. 35(8), 3301-3306. ‏
Rattanatum, T., Frauzem, R., Malakul, P., and Gani, R. 2018. LC Soft as a Tool for LCA: New LCIA methodologies and interpretation. vol. 43. ‏ ‏
Rathke, G. W., and Diepenbrock, W. 2006. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy. 24(1), 35-44.
Saber, Z., Esmaeili, M., Pirdashti, H., Motevali, A., and Nabavi-Pelesaraei, A. 2020. Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. Journal of Cleaner Production. 263, 121529. ‏
Santiveri, F., Royo, C., and Romagosa, I. 2004. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. European journal of agronomy. 20(3), 281-292. ‏ ‏
Sharma, P., Abrol, V., and Sharma, R. K. 2011. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. European journal of agronomy. 34(1), 46-51. ‏
Singh, J. M. 2002. On farm energy use pattern in different cropping systems in Haryana, India. Master of Science. Germany: International Institute of Management, University of Flensburg. ‏
Smith, S., and Zhu, Y. 2001. Application of arbuscular mycorrhizal fungi: Potentials and challenges.
Soni, P., Sinha, R., and Perret, S. R. 2018. Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Reports. 4, 554-564. ‏‏
Sturz, A. V., and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research. 72(2), 107-123. ‏
Taghavifar, H., and Mardani, A. 2015. Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA). Renewable Energy. 74, 208-213.
Taherzadeh-Shalmaei, N., Sharifi, M., Ghasemi-Mobtaker, H., and Kaab, A. 2021. Evaluating the energy use, economic and environmental sustainability for smoked fish production from life cycle assessment point of view (case study: Guilan Province, Iran). Environmental Science and Pollution Research. 28(38), 53833-53846. ‏
Tahir, M., Khalid, U., Ijaz, M., Shah, G. M., Naeem, M. A., Shahid, M., and Kareem, F. 2018. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Brazilian Journal of Microbiology. 49, 15-24.
Taki, M., Soheili-Fard, F., Rohani, A., Chen, G., and Yildizhan, H. 2018. Life cycle assessment to compare the environmental impacts of different wheat production systems. Journal of Cleaner Production, 197, 195-207.
Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. New perspectives and approaches in plant growth-promoting Rhizobacteria research, 243-254. ‏
Verdi, L., Dalla Marta, A., Falconi, F., Orlandini, S., and Mancini, M, 2022. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): A case study with an ancient wheat variety. European Journal of Agronomy. 141, 126638.
Wang, M., Xia, X., Zhang, Q., and Liu, J. 2010. Life cycle assessment of a rice production system in Taihu region, China. International Journal of Sustainable Development and World Ecology. 17(2), 157-161. ‏
Wang, C., Li, X., Gong, T., and Zhang, H. 2014. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County. Journal of Cleaner Production. 68, 56-63. ‏
Wowra, K., Zeller, V., and Schebek, L. 2021. Nitrogen in Life Cycle Assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Science of the Total Environment. 763, 143009.
Yadav, S. K., and Mishra, G. C. 2013. Environmental life cycle assessment framework for Sukker production (raw sugar production). International Jourbal of Environment Engagement Management. 4(5), 499-506. ‏
Yang, Z., Zhu, Y., Zhang, J., Li, X., Ma, P., Sun, J., and Li, N. 2022. Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China. Energy. 245, 123270. ‏
Yuan, S., and Peng, S. 2017a. Trends in the economic return on energy use and energy use efficiency in China's crop production. Renewable and Sustainable Energy Reviews. 70, 836-844. ‏
Yuan, S., and Peng, S. 2017b. Input-output energy analysis of rice production in different crop management practices in central China. Energy. 141, 1124-1132.
Zhang, X., Pan, H., Cao, J., and Li, J. 2015. Energy consumption of China’s crop production system and the related emissions. Renewable and Sustainable Energy Reviews. 43, 111-125.