
Dehghani et al. / Environmental Resources Research 8, 2 (2020)                                                                               161 

 

Environmental Resources Research 
Vol. 8, No. 2, 2020 

 
GUASNR 

 
Forecasting daily river flow using an artificial flora–support  

vector machine hybrid modeling approach (case study:  
Karkheh Catchment, Iran) 

 
R. Dehghani1, H. Torabi Poudeh2*, H. Younesi3, B. Shahinejad3 

1PhD student in aquatic structures, Lorestan University, Lorestan, Iran 
2Associate Professor, Department of Water Engineering, Lorestan University, Lorestan, Iran 
3Assistant Professor, Department of Water Engineering, Lorestan University, Lorestan, Iran 

 
Received: February 2020;    Accepted: September 2020 

 
Abstract 
In this study, a hybrid support vector machine–artificial flora algorithm method was 
developed to estimate the flow rate of Karkheh Catchment rivers using daily discharge 
statistics. The results were compared with those of the support vector–wave vector machine 
model. The daily discharge statistics were taken from hydrometric stations located upstream 
of the dam in the statistical period 2008 to 2018. Necessary criteria including coefficient of 
determination, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Nash–
Sutcliffe coefficient were used to evaluate and compare the models. The results illustrated that 
the combined structures provided acceptable results in terms of river flow modeling. Also, a 
comparison of the models based on the evaluation criteria and Taylor’s diagram demonstrated 
that the proposed hybrid method with the correlation coefficient R2= 0.924-0.974, root-mean-
square error RMSE= 0.022-0.066 m3/s, mean absolute error MAE= 0.011-0.034 m3/s, and 
Nash-Sutcliffe coefficient NS=0.947-0.986 outperformed other methods in terms of 
estimating the daily flow rates of the rivers. 
 
Keywords: Artificial flora, Support vector machine, Wavelet, Karkheh catchment. 

 
Introduction1 
One of the most important concerns in 
managing floods and preventing the ensuing 
economic and life-threatening damages is 
accurate estimation of river flow. 
Accordingly, application of reliable methods 
to the prediction of river flow in order to 
plan for timely use of water resources is 
gaining growing significance (Zhang et al., 
1998). In other words, accurate river flow 
forecasting can play a vital role in water 
resources planning and management. 
However, various factors affect this 
phenomenon, making its analysis difficult. 
Hence, it is necessary to incorporate 
influential factors in a model for estimating 
river flow at an acceptable level (Kolte, 
2013; Edusa and Babel, 2012). Today, 
intelligent systems are widely used for 
estimating nonlinear phenomena. One of the 
methods that has been considered in the field 
of hydrology is the support vector machine 
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model. This model has good performance 
and optimization algorithms have been 
applied in recent years to increase its 
accuracy. Due to the addition of velocities 
with random values to the problem variables, 
the metaheuristic algorithms may be 
inadvertently transferred out of their defined 
ranges. On the other hand, based on the 
values of discrete variables in other 
algorithms, the answers obtained in all 
iterations are in the domain of the problem. 
As a result, finding a globally optimum 
solution to some particular cases takes a 
longer amount of time, causing the problem 
to be trapped in local optima (Chen and 
Zhou, 2008). Therefore, the algorithm of 
artificial flora, which is a combination of 
continuous and discrete optimizations, has 
been developed for large-scale problems in 
order to shorten the time required to achieve 
a global optimal solution and prevent being 
trapped in local optima. This algorithm has 
an acceptable ability to solve nonlinear 
problems with large dimensions at an 
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appropriate convergence speed. With these 
in mind, this study combines the artificial 
flora algorithm with support vector machine. 
In recent years, a number of studies have 
attempted to present smart hybrid models for 
forecasting river flow rate. In the following, 
some cases are presented. 

Hung et al. (2014) predicted monthly 
flow in the Huaxian Station in China using 
a support vector machine and their results 
proved the high accuracy of the proposed 
model. Sedighi et al. (2016) predicted the 
rainfall runoff process in Rudak catchment 
located in northeastern Tehran by Artificial 
Neural Networks (ANNs) and support 
vector machine using 92 MODIS sensors 
within the statistical period 2003-2005. 
They demonstrated the acceptable 
performance of the support vector machine 
model in estimating runoff. In another 
study, Ghorbani et al. (2016) used 
supportive modeling machines and ANNs 
to predict the daily flow of the Cypress 
River in Texas. They employed correlation 
coefficient and RMSE to evaluate the 
models and demonstrated the proper 
performance of the support vector machine 
in predicting river flow and its better 
accuracy than ANNs. Samadian Fard et al. 
(2019) proposed a hybrid model comprising 
support vector machine regression and fly 
algorithm and compared its performance 
with the decision tree model in estimating 
Dubai River and Venar located in Iran. 
Superior performance of the proposed 
hybrid model was proven in this research. 
Having employed support models and 
decision trees to predict the monthly flow 
of the Swat River in Pakistan, Adnan et al. 
(2019) showed effectiveness of the support 
vector machine model. Rajaee et al. (2020) 
used a combination of wavelet conversion 
and support vector machine models, 
nephropathy, ANNs, and genetic planning 
to predict the daily flow of the Dunbe River 
in Serbia. The results showed that the 
hybrid model comprising vector machine 
model and wavelet model experienced less 
serious errors than other hybrid models did. 
Alizadeh et al. (2020) examined the hybrid 

model of support vector-wavelet machine to 
predict the daily flow of the Souris River in 
the northern United States and observed the 
efficiency and accuracy of the proposed 
model. Hussein and Ahmed Khan (2020) 
conducted a study on predicting the flow of 
the Hanza River in Pakistan employing the 
support vector machine models, ANNs, and 
random forest. The results showed better 
performance of the random forest model. 

The rivers of Karkheh catchment area 
are generally considered as the most 
important watersheds in Iran. They 
constitute the major source of water supply 
to the adjacent areas for agriculture and 
drinking purposes. However, the drastic 
reduction in their flow indicates the 
necessity of simulating river flow in this 
basin and presenting measures to manage 
water sources more than ever. Therefore, 
the aim of this study was to predict the 
daily flow of Karkheh catchment rivers 
using a hybrid model comprising support 
vector machine and artificial flora as well 
as to compare the results with those of the 
hybrid support vector machine-wavelet 
model. 
 
Materials and methods 
The study area 
Karkheh basin with an area of 51640 square 
kilometers in southwestern Iran is located 
in the range of 30° to 35° N and 46° to 49° 
E. The Karkheh catchment is part of the 
Persian Gulf’s catchment area, which is 
bounded in the north by the Sirvan, 
Sefidrood, and Qarachai river basins; in the 
west by the Iran-Iraq border area; in the 
south by part of the western borders of the 
country; and in the east by the Dez River. 
The Karkheh river is 900 km long and it is 
the third largest river in the country in 
terms of the average annual discharge (8.5 
billion cubic meters). Figure 1 shows the 
selected stations of the Karkheh catchment 
area, which did not have any missing or 
heterogeneous data. The data were obtained 
from the Lorestan Regional Water 
Company and the Khuzestan Water and 
Electricity Organization. 
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Figure 1. The study area 
 
Table 1. Stations characteristics 

Area (Km2) Longitude Latitude Station  Number  
1140  38″ ′ 14 ° 48  37″ ′ 26 ° 33  Chamanjir  1  
780  59″ ′ 48 ° 47  ″ ′20 18 ° 33  Madianrod  2  
800  22″ ′ 53 ° 47  51″ ′ 18 ° 33  Afrineh  3  
820  ″ ′39 53 ° 47  52″ ′ 19 ° 39  Kashkan  4  
90  9′ ° 48  25′ ° 32  Polzal  5  
120  43′ ° 47  9′ ° 32  Jelogir  6 

 
Support vector machine  
SVM was developed in the early 1990s by 
Vapnik et al. (Vapnik, 1998; Misra et al., 
2009). SVM embodies the Structural Risk 
Minimization (SRM) principle, which 
minimizes the expected error of a learning 
model, reduces the overfitting problem, and 
enables better generalization (Vapnik, 
1998). It is an efficient learning system 
based on optimization theory that uses 
minimization of structure error and leads to 
an optimum response [46]. In the regression 
model, SVM is a function related to the Y-
dependent variable and an X-independent 
one. Similar to regression issues, the 
relation between independent and 
dependent variables is assumed to be clear, 
as given below (Hamel, 2009). 

                                  (1) 
                                          (2) 

If WT is the coefficient vector, b is fixed for 
the regression function properties and is 

Kernel function, whose form is given 
below. These properties are further 
corrected by training the support vector 
model using data collection (Yoon et al., 
2011). To calculate W and b, error function 
(Eq. 3) in SVM-  ε must be minimized (Eqs. 
3 and 4) (Vapnik, 1998). 

                  (3) 

                          (4) 

   (5) 
          

where C is a true and positive value that 
determines any deviation in the model 
training error. is kernel, N is the number 
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of samples, and are deficient 

variables. Support vector machine function 
is re-written as follows:  

            (6) 

where  is the Lagrange coefficient.  

is calculated in a special space 
(Vapnik,1998). To solve the problem, a 
common pattern in the support vector 
model is the kernel function.  

           (7) 

Different Kernel functions have been used 
for ε-SVM fabrication. Different kernel 
functions in the support vector model 
include polynomial kernel, radial basis 
functions (RBFs), and linear kernel, which, 
due to their popularity and widespread use 
(Basak et al., 2007; Vapnik and 
Chervonenkis, 1991), have been employed 
in this study. Of note, vector machine 
calculations were conducted based on 
coding in MATLAB software and the 
parameters were optimized. 

                                  (8) 

                          (9)  

                                        (10) 
 
Algorithm of artificial flora  
Biological bases  
Flora disperses its grains in different ways, 
which are divided into autochory and 
allochory. Autochory involves self-
dispersal of grains, while allochory is the 
process of distributing grains through 
external forces. Autochory provides a 
condition for independent migration of flora 
to an appropriate environment. On the other 
hand, allochory provides conditions for 
migration to far regions. Different methods 
of grain distribution reduce the probability 
of plant extinction. Natural environment 
under a harsh condition and competition 
may reduce flora distribution. Following 
the migration of flora to a new 

environment, flora species develop (Cheng 
et al., 2018). Flora migration can change 
the distribution region and cause 
development, extinction, and emergence of 
flora. Flora cannot move, but can find the 
best place for life. Flora randomly 
distributes grains during migration and 
reproduction. A grain can survive for a 
while. Flora survives and distributes grains 
in its surrounding environment. It develops 
and adapts to the environment under a harsh 
condition. Before the extinction of flora in a 
region, it may grow in a new environment. 
Grains may grow in a new region and 
replicate by multi-replication. Flora finds 
an optimum region for growth, 
development, extinction, and growth 
(Cheng et al., 2018).  
 
Theory of artificial flora algorithm  
Artificial flora algorithm is composed of 
four main elements: main flora, child flora, 
flora position, and distribution distance. 
Child flora acts as the grain for the main 
florae and it cannot distribute grain. 
Distribution distance means grain 
distribution distance. There are three 
behavior patterns: development behavior, 
distribution behavior, and selection 
behavior (Rosin and Belew, 1995; Pagie 
and Mitchell, 2002; Wiegand and Sarma, 
2005). Development behavior means flora 
development for adaptation to the 
environment (Hillis,1990; Cartlidge and 
Bulloc, 2004; Williams and Mitchell, 
2005). Distribution behavior stands for the 
movement of grains using allochory and 
autochory. Selection behavior suggests 
survival and extinction for environmental 
reasons. Figure 2 shows flowchart of the 
AF algorithm. 

 
Wavelet transform  
A wavelet transform is presented as a 
replacement method for Fourier 
transformation and its purpose is to 
dominate the degradation of frequency 
within a short amount of time. For the 
transform wavelets such as short-time 
transformation, the signal is divided into 
windows (Vapnik, 1995). The most 
important difference between the above-
mentioned two methods is the changes of 
frequency type in wavelet transform, in 
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which scale rather than frequency is used. 
Based on wavelet transform, high scales are 
expanded and thus, the details can be 
analyzed (Wang et al., 2000). A wavelet 
means a small wave and it is a small part of 
the main signal whose energy is 
concentrated in time. The mother signal can 
be degraded to wavelets and different 

scales. Wavelets include the transformed 
and dilated samples with fluctuations. 
Based on the properties of wavelets, time 
series of continuous wavelet transform can 
be analyzed (Shin et al., 2005). Wavelet 
transformation is defined in the continuous 
and discrete forms. 

 
 

Figure 2. Flowchart of AF algorithm 
 
Continues Wavelet Transform (CWT)  
CWT is defined based on Equations 11 and 
12 as follows (Wang et al., 2000): 

(11)  
(12)                                               

Equation 12 is the relationship between two 
variables of  and , where S is the scaling 
parameter and  is the translation 

parameter. In addition, * shows the mixed 
paired,  is the window function for the 
mother wavelet, and  is the 

wavelet of transformation and scale change 
for the mother wavelet (Shin et al., 2005). 
The term “mother” is used because all the 
transformed and dilated (daughter wavelet) 
versions are obtained from the function 
(Safavi and Romagnoli, 1997). The mother 
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wavelet is a pattern for other windows, 
showing the vector cross of two functions 
in the signal space.  
 
Evaluation criteria 
To evaluate the accuracy and efficiency of 
the models, coefficients of determination 
including (R2), RMSE, MAE, and Nash-
Satcliffe (NS) were used according to the 
given relationships (Zhou et al., 2007). The 
best values for these four criteria are one, 
zero, zero, and one, respectively. 
 

     (13) 

  (14) 

             (15) 

            (16) 

  
In the above relations, xi and yi are the 
observational and computational values in 
the ith temporal step, respectively; N is the 
number of temporal steps; and x ̅ and y ̅ are 
the means of the observational and 
computational values, respectively. 
 
Results and Discussion 
Combinatorial selection of input variables 

is an important step for modeling. Hence, 
the cross-correlation between input and 
output variables was calculated and input 
parameters were selected for obtaining an 
optimum model for predicting the flow rate 
of the river Karkheh. The results are shown 
in Table 3. In this table, Q (t-1), Q (t-2), Q 
(t-3), and Q (t-4) columns show river flow 
at times t-1, t-2, t-3, and t-4 and Q (t) shows 
river flow at time t. To facilitate a better 
understanding of the nature of the 
mechanism, pattern complexity and 
memory are increased, while the model 
precision decreases. To model the river 
flow, most of the efficient data were used 
for training. This study investigated the 
effects of streamflow using return flow. The 
cross correlation between input and output 
data was higher than 0.750 and different 
combinations of input parameters were used 
for estimating the optimum model for 
Karkheh catchment. The data were obtained 
from hydrometric stations of Chamanjir, 
Madianrod, Afrineh, Kashkan, Polzal, and 
Jologir over the years 2008-2018. A total 
number of 2920 records were randomly 
selected for training and other 730 records 
for assessing accuracy comprising 80% and 
20% for training and testing, respectively 
(Nagy et al., 2002; Kisi et al., 2006). Cross 
correlation between input and output 
variables is shown in Table 2. 

 
Table 2. Cross correlation between input and output variables 

Input  Output  Station Q(t-4)  Q(t-3)  Q(t-2)  Q(t-1)  
0.854  0.893  0.921  0.940  

Q(t)  

Chamanjir  
0.754  0.814  0.864  0.890  Madianrod  
0.813  0.865  0.892  0.914  Afrineh  
0.834  0.876  0.904  0.925  Kashkan  
0.822  0.885  0.896  0.920  Polzal  
0.826  0.880  0.897  0.924  Jelogir  

 
Table 3. Selected combinations of input parameters 

Output Input structure Number 
Q(t) Q(t-1) 1 
Q(t) Q(t-1),Q(t-2) 2 
Q(t) Q(t-1),Q(t-2),Q(t-3) 3 
Q(t) Q(t-1),Q(t-2),Q(t-3),Q(t-4) 4 

 
The results for support vector model-AF 
algorithm  
A hybrid method comprising the support 
vector machine and artificial flora 

algorithm is proposed. The optimal values 
of the characteristics of the SVM model 
including ε and C were determined. Also, 
different kernels were examined and based 
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on their performances as well as the used 
kernel functions, the RBF function was 
adopted due to its higher accuracy in 
estimating the daily flow rate of rivers 
(Liong and Sivapragasam, 2002; Lin et al., 
2006). For this, the characteristic of γ must 
be determined. Therefore, in order to 
predict the daily flow rate of rivers using 
the SVM model, it is necessary to calculate 
the optimal values of ε, C, and γ, for which 
the best values are determined by artificial 
flora algorithm. Using the developed 
models, the one with the least error could 
be determined and its characteristics be 
selected as the optimal values of ε, C, and γ. 
The artificial flora algorithm was inspired 
by the migration and reproduction behavior 
of flora, comprising three main behaviors 
including evolution, distribution, and 
selection. This algorithm prevents reaching 
a local optimal solution. It incorporates 
both self-pollination and cross-pollination 
behaviors. While the former searches 
around itself for the optimum solution, the 
latter explores a broader space, which 
improves the capability of the algorithm to 
find the optimum solution and increases the 
convergence speed to the optimal solution. 
The results of the hybrid support vector 
machine-artificial flora algorithm are given 
in Table 4. According to the table, the 
proposed hybrid model for the basin station 
of the catchment area is more accurate due 
to the lack of intervention of the base flow 
along the river. The correlation coefficient 
R2=0.924-0.974, root-mean-square error 
RMSE= 0.022-0.066 m3/s, mean absolute 
error MAE=0.011-0.034 m3/s, and        
Nash-Sutcliffe coefficient NS= 0.947-0.986 
were achieved at the validation step of the 
model. Figure 3 shows the distribution 
diagram of the proposed hybrid model at 
the validation step, indicating the best fit 
line of computational values y = x. In this 

figure, the estimated and observational 
values,except for a few points, are on the 
semiconductor line, indicating their equality 
on y = x. Also, as can be seen in the figure, 
the hybrid model has an acceptable 
performance in predicting the maximum 
and minimum with high proximity to the 
actual values. 
 
The results of support vector machine-
wavelet  
To evaluate the results of the hybrid model, 
the input parameters were broken down into 
sub-signals using wavelet conversion and 
then, the mentioned sub-signals were added 
to the model of the backup vector machine 
as input, constituting the combined model. 
One of the most important and fundamental 
points in this study was the study of 
different wave functions and it was 
observed that the Mexican cap wave had 
better performance than other functions. 
Table 5 shows the results of the hybrid 
model for the selected stations of the 
Karkheh catchment area. The table 
indicates that the proposed hybrid model 
for Chamanjir station had higher accuracy 
and lower error with the correlation 
coefficient R2= 0.915-0.964, root-mean-
square error RMSE=0.031-0.084 m3/s, 
mean absolute error MAE=0.015-0.068 
m3/s, and Nash-Sutcliffe coefficient 
NS=0.930-0.978. Figure 4 demonstrates the 
best fit line (y = x) for the distribution 
diagram of the computational values of the 
support wave vector machine in the 
validation stage. In this figure, the 
estimated and observational values except 
for a few points are on the semiconductor 
line (y = x), indicating their equality.  Also, 
as observed in the figure, the hybrid model 
has an acceptable performance in predicting 
intermediate values with high proximity to 
the actual values. 
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Table 4. Analysis of AF-support vector machine for the selected stations 
Testing  Training  

Station NS  MAE 
/s)3(m  

RMSE 
/s)3(m  

2R  NS  MAE 
/s)3(m  

RMSE 
/s)3(m  

2R  

0.986  0.011  0.022  0.974  0.978  0.012  0.033  0.956  Chamanjir  
0.947  0.034  0.066  0.924  0.923  0.037  0.075  0.905  Madianrod  
0.974  0.018  0.036  0.955  0.965  0.028  0.056  0.944  Afrineh  
0.977  0.014  0.025  0.968  0.972  0.014  0.030  0.951  Kashkan  
0.962  0.028  0.054  0.941  0.937  0.031  0.064  0.923  Polzal  
0.967  0.025  0.048  0.948  0.951  0.030  0.061  0.936  Jelogir  

  

 
Figure 3. Scatter diagram of observational and calculated amounts using AF-support  

vector machine in accuracy assessment phase 
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Table 5. Analysis of the wavelet-support vector machine for the selected stations 
Testing  Training  

Station 
NS  MAE 

/s)3(m  
RMSE 

/s)3(m  
2R  NS  MAE 

/s)3(m  
RMSE 

/s)3(m  
2R  

0.978  0.015  0.031  0.964  0.968  0.023  0.048  0.942  Chamanjir  

0.930  0.068  0.084  0.915  0.910  0.075  0.095  0.887  Madianrod  

0.945  0.058  0.079  0.936  0.934  0.058  0.074  0.921  Afrineh  

0.968  0.021  0.044  0.956  0.948  0.037  0.063  0.932  Kashkan  

0.941  0.063  0.081  0.927  0.918  0.074  0.088  0.894  Polzal  

0.957  0.051  0.077  0.942  0.925  0.063  0.084  0.914  Jelogir  

 

 
Figure 4. Scatter diagram of observational and calculated amounts for the wavelet-support vector 

machine 
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Figure 5. Computational and observational values of the studied models in the validation phase 

 
Comparison of the performances of the 
models 
Considering the optimal results of each 
hybrid artificial intelligence model and 
comparing the findings, the capability of 
both models to simulate the flow in the 
Karkheh catchment area was proved. Figure 
5 illustrates the diagrams of the observed 
and calculated values for the studied 
models with respect to time in all of the 
studied stations. As observed earlier, the 
support vector machine-artificial flora 
optimization algorithm model has shown an 
acceptable ability to estimate the minimum 
and maximum values. Moreover, the 
support vector machine-wavelet model 

exhibits appropriate performance in 
estimating the intermediate values such that 
they are close to the observed values. 
Figure 6 displays the diagrams of relative 
error of the studied models with respect to 
the observed values. In this figure, the 
support vector machine-artificial flora 
optimization algorithm has lower error than 
the support vector machine-wavelet such 
that the relative error values of the latter 
model are higher for all of the studied 
stations. 

Taylor diagrams were used to analyze 
and evaluate the models used in the study, 
as shown in Figure 7. A clear advantage of 
Taylor’s diagram is that it uses two 
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common correlation statistics: the 
correlation coefficient and the standard 
deviation (Taylor, 2001). The closer the 
predicted value to the observational value is 
in terms of correlation coefficient and 
standard deviation, the higher the 
predictability will be. Taylor’s performance 
chart shows that the AF-SVM model has 
the highest efficiency and performance, 

because the predicted standard deviation 
value has the closest distance to the 
standard deviation of observational data and 
the correlation coefficient shows the highest 
value. According to the evaluation criteria, 
the model with the highest predictive power 
was AF-SVM and the model WSVM had 
the lowest predictability. 

 

 
Relative error in percentage 

 
Figure 6. Diagram of relative error for the models studied in the validation phase 
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Figure 7. Taylor diagram of the studied stations 
 

Conclusion 
In this study, an attempt was made to 
evaluate the performance of two models in 
simulating the daily flow of rivers in the 
Karkheh catchment area using stations data. 
The employed models were the support 
vector machine-artificial flora hybrid model 
and the support vector wave machine. The 
observational values for the flow were 
compared with the predicted values using 
evaluation criteria. Both models achieved 
better results with structures consisting of 
one to four times delays than those with 
other structures. Also, according to the 
evaluation criteria, it was concluded that 
both models could predict the daily flow 

rates of the rivers with relatively high 
accuracy. Meanwhile, the proposed hybrid 
model of Support Vector Machine - 
Artificial Flora (AF-SVM) showed higher 
accuracy and lower error. Also, Taylor’s 
diagrams showed that the hybrid model was 
more accurate. In general, it can be stated 
that high accuracy of the hybrid model was 
due to the optimization of the parameters of 
the backing machine model by the artificial 
flora algorithm with the best possible 
values, which could be due to the capability 
of the algorithm to find the optimal location 
and its increased convergence speed. 
Overall, this study supported the 
effectiveness of the combined model of 
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support vector machine-artificial flora in 
predicting the daily flow of rivers. Given 
that the decision to exploit water resources 
and implement management strategies for 
uses (especially agriculture and industry) 
depends on the accurate estimation of river 
flow, the proposed hybrid model provides 
an appropriate tool in this setting. It is also 

recommended that hybrid models of 
support vector machine be used with new 
optimization algorithms such as creative 
gunner, ski, chicken crowding, cat 
crowding, etc. and compare the results. 
Moreover, the proposed model in this study 
can be applied to other hydrological 
phenomena.
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