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Abstract 

Characterizing soil infiltration parameters is time consuming and costly. We carried out 
the current research to predict different parameters of soil infiltration using field/laboratory 
measured and remotely-sensed data. The investigated parameters included infiltration rates 
at different time intervals and the parameters of the three well-known infiltration models. 
We employed soil sampling and field measurements on late spring 2012 and acquired 
ETM+ data for the correspondent dates. We measured several soil properties as well as 
infiltration. Then, we developed several pedo-transfer functions (PTFs) from the collected 
field/laboratory measured and remotely sensed data to predict the intended infiltration 
parameters. Results showed that field/laboratory measured data were able to predict soil 
infiltration rates and parameters of the investigated models with reasonably high accuracies 
(E value up to 0.961). The results also revealed that, although there was no significant and 
robust relationship between soil surface reflectance and the investigated parameters, the 
developed PTFs had reasonable accuracies (E value up to 0.634) in estimating the intended 
infiltration parameters using soil characteristics (moisture content, soil separates, and 
organic carbon) which are predictable from remotely sensed data.  
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Introduction* 
Soil infiltration refers to water percolation 
downward from soil surface. Infiltration 
rate decreases nonlinearly through time and 
attains to a relatively constant value. 
Richards’s Equation describes the 
phenomenon in the case of clearly defined 
and determined relationship between soil 
matric potential and hydraulic conductivity. 
Integration of Darcy’s low and the 
continuity equation results in a general 
equation for the unsaturated soil water flow. 
In order to use this general equation to 
calculate the infiltration rate, user will need 
to determine soil moisture and matric 
potential as a function of time and soil 
depth. Clemmens (1983) believes that we 

                                                             
*Corresponding author; mehdirmti@gmail.com 

need to simplify theoretical equations using 
several assumptions in order to make them 
applicable for soil infiltration rate 
predictions. However, even simplified 
forms are not applicable most of the time. 
Therefore, several mathematical equations 
or models have been introduced based on 
empirical data and are usually used to 
characterize soil infiltration process both in 
quantitative and qualitative points of views 
(Clemmens 1983). A single empirical 
equation is not also able to describe soil 
infiltration individually in different soils 
and different boundary conditions due to 
infiltration complicated process. Therefore, 
different researchers have introduced 
several models to simulate infiltration 
process. These empirical equations are site-
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specific and usually require calibration-
using field measured infiltration data. 

Different approaches have been applied 
for direct and basin measurements of soil 
infiltration (Mao et al., 2008). Direct 
methods are usually more appropriate in 
small regions. In contrast, basin methods are 
more suitable to measure soil infiltration at 
watershed scale. Basin methods use rainfall 
and runoff intensities of a single rainfall 
event to determine infiltration rate or 
cumulative infiltration (Mao et al., 2008). 
On the other hand, several methods 
including double rings, single ring, Marriott-
double ring, disc infiltrometer, run off-on-
ponding, run off-on-out, and linear source 
methods (Mao et al. 2008) also have been 
introduced for direct measurement of soil 
infiltration at local scales. Double rings 
method is the most conventional method to 
determine soil infiltration, which is of course 
time consuming and requires large volume 
of water to run it.  

Pedo-transfer functions (PTFs) are of 
the mainly used approaches to link different 
soil characteristics (non-readily available 
ones) to the readily available data. Since 
soil hydraulic characteristics are the “hard 
to get and expensive” properties, soil 
scientists have applied PTFs to predict them 
using several readily available soil 
attributes. Bouma (1989) stated that PTFs 
are tools which convert available data to the 
needed ones. Several researchers have 
applied PTFs to estimate different soil 
properties including soil infiltration. For 
example, Mahdian et al. (2009) employed 
several linear and nonlinear regression 
functions between field/laboratory 
measured infiltration data and different soil 
characteristics including soil separates, bulk 
density, and soil moisture contents at field 
capacity (FC) and permanent wilting point 
(PWP). Their results revealed that although 
most of the developed PTFs were 
statistically significant but none of them 
resulted in reasonably robust correlations 
between measured and the predicted values. 
They subjected this to its complicated 
process and extensive controlling factors. 
They also suggested taking into account an 
appropriate indicator linking soil structure 
to its infiltration process. Sarmadian and 

Taghizadeh-Mehrjardi (2014) employing 
multiple linear regression and artificial 
neural network (ANN) model developed 
several PTFs to predict infiltration rate and 
deep percolation water. Their results 
showed that both ANN and regression 
methods predicted the investigated 
parameters with relatively high accuracies. 
Kashi et al. (2014) also employed several 
intelligence-based models including 
artificial neural networks (MLP and RBF), 
adaptive neuro-fuzzy inference system 
(ANFIS), and multiple regression (MR) 
techniques to develop several PTFs to 
predict infiltration rate. They reported that 
the MLP model predicted infiltration rate 
much better than ANFIS, MR, and RBF 
models. More recently, Rahmati (2017) also 
used multiple regression, artificial neural 
network, and group method of data 
handling in a competitive way to develop 
several PTFs to predict soil infiltration rates 
point-basely from several soil 
characteristics with relatively high accuracy 
with Nash-Sutcliffe value up to 0.963.         

Availability of the input data is one of 
the important components of PTFs 
development. Satellite images are of the 
most highly concentrated multidisciplinary 
sources of the readily available data in earth 
surface investigations, which most of 
scientists as well as soil scientists are 
interested in. Soil scientists have mainly 
used remote sensing data to predict surface 
soil parameters including surface soil 
moisture (Rahmati et al., 2015, He et al., 
2016), organic carbon (Ayoubi et al., 2011; 
Rahmati et al., 2016), evaporation rate 
(Bastiaanssen et al. 1998), surface albedo 
(Parviz et al., 2010), soil erosion (De Roo et 
al. 1996), soil salinity (Gorji et al. 2015, 
Scudiero et al. 2015, Rahmati and 
Hamzehpour, 2017) and so forth. Although 
there is no report, up to our knowledge, on 
remote sensing data usages to predict 
surface soil infiltration yet, it seems that 
establishment of a logical relation between 
remotely sensed data and soil infiltration 
rate or parameters of infiltration models can 
be an effective step in terms of time and 
cost. However, direct prediction of 
infiltration rate or its parameters using 
remotely sensed data (soil surface 
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reflectance or radiations) sounds very 
complicated. Therefore, employing 
empirical relationships between soil 
infiltration parameters and its surface 
characteristics (such as soil moisture, 
organic carbon, soil texture, soil salinity, 
slope, etc.), which are predictable using 
remotely sensed data seems to be more 
valuable and applicable approach at this 
time. Furthermore, some promising results 
in remote sensing of runoff (Guo et al., 
2011) lead to optimism in remote sensing 
of soil infiltration. Therefore, in the current 
research, we intended to link different 
hydraulic characteristics of surface soil 
including infiltration rates and the 
parameters of Green and Ampt (GAM), 
Kostiakov (KM), and modified Kostiakov 
(MKM) models to field or laboratory 
measured data as well as remotely sensed 
ones.  

Materials and Methods  
Study Area 
We conducted this study at Lighvan 
Watershed, East Azerbaijan, located in 
North Western Iran, between latitudes 37° 
43' 07" to 37° 50' 08" N and longitudes 46° 
22' 23" to 46° 28' 05" E. The watershed has 
an area of 7,854 hectares and an elevation 
varying from 3,534m in uplands to 2,190m 
in the watershed outlet (Figure 1), with an 
average rainfall of 320 mm per year. Bare 
lands (46%) and poor pasture (42%) 
comprise the major parts of the study area 
(Figure 1) (Rahmati et al., 2015), while only 
12% of the area is covered by irrigated and 
rainfed farming (Rahmati et al., 2015). As 
seen from Figure 2, most parts of the study 
area (65%) have aspect of east, northeast and 
northwest as well as north.  

 

  
 

Figure 1. DEM (left) and land use (right) maps of the Lighvan Watershed, located in northwest of Iran 
 
Soil sampling 
Prior to soil sampling, we divided the study 
area into 1-hectare square pixels and then 
took soil samples from each pixel in order 
to employ a randomized controlled 
sampling strategy. From 45 cells and five 
soil samples per cell, we collected 225 

samples from 0-15 cm depths on late spring 
2012. Samples locations were recorded 
using handheld Garmin GPS and then were 
registered in ArcGIS for further use.  
Laboratory measurements 
Using soil samples, we determined soil 
textures through hydrometer method (Gee 
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and Or 2002), soil organic carbon through 
wet oxidation (Nelson and Sommers 1982), 
soil aggregate stability (WAS) through wet-
sieving (Nimmo and Perkins, 2002), and 
soil electrical conductivity (EC) in paste 
saturation extracts through EC-meter. In 
order to measure soil moisture content, we 
repeated soil sampling on two different 

days (11-June-2012 and 18-June-2012). We 
applied the first day’s data to calibrate the 
polynomials developed for the soil moisture 
content prediction from the remote sensing 
data and the second day’s data for their 
validation. No rainfall occurred during the 
period 11-June until 18-June 2012, between 
two sampling dates. 

 

  

Figure 2. Map of the aspects in Lighvan Watershed (left) and their percentage (right) 
 

Furthermore, a number of 135 
undisturbed soil samples taken from the 
study area (3 samples per cell) were 
employed to determine saturated hydraulic 
conductivity by falling head method 
(Reynolds et al., 2002), bulk density 
(Grossman and Reinsch, 2002), and 
saturated moisture content by volumetric 
method (Dane and Hopmans, 2002). Soil 
infiltration was measured at the sampling 
locations using disc infiltrometer (Perroux 
and White 1988). For this, the suction head 
was set to zero and the measurements 
continued for 45 minutes.  
 
Satellite images 
We used images from ETM+ sensor of 
Landsat 7 dated 13-Jun-2012, 15-July-
2012, and 17-Sep-2012 to fulfil the current 
research. The spatial, spectral, and temporal 

resolutions of the ETM+ data are 15 and 30 
meters, 8 bands, and 16 days, respectively. 
We acquired ETM+ data for sampling dates 
through USGS website. We applied all 
needed pre-processing steps on the remote 
sensing data to obtain accurate calculations. 
Georeferencing and atmospheric correction 
were the only corrections needed in our 
project. No geometric correction was 
needed for our data.     
 
Input and output variables in PTFs 
development 
We applied four sets of data to develop 
PTFs for predicting soil infiltration 
parameters. The first set included clay 
(CC), silt (Si), and sand (Sa) percent, 
saturated hydraulic conductivity (Ks), bulk 
(Db) and particle (Dp) densities, wet-
aggregate stability (WAS), antecedent (θi) 
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and field saturated (θfs) moisture contents, 
organic carbon (OC), and electrical 
conductivity (EC) of saturated paste as 
input variables and soil infiltration 
parameters as output. The second data set 
comprised remotely sensed data as input 
variables to predict infiltration parameters 
including soil infiltration rates at different 
time intervals and parameters of GAM, 
KM, and MKM models. In this regard, we 
used soil surface reflectance from different 
bands of ETM+ data (Band1 to Band5, 
Band6_1, and Band6_2) as independent 
variables. The third data set considered both 
ground measured (CC, Si, Sa, Ks, Db, Dp, 
WAS, θi, θfs, OC, and EC) and remotely 
sensed (Band1 to Band5, Band6_1, and 
Band6_2) data as input variables to predict 
soil infiltration parameters. 

We decided to use only the ground 
measured data, which are potentially 
predictable from remotely sensed data in 
order to provide an indirect method to 
estimate soil infiltration parameters through 
remotely sensed data. To this end, we chose 
soil moisture content, soil texture, soil 
organic carbon, and soil salinity as 
independent variables because previously 
published results of the same watershed 
revealed the applicability of the remotely 
sensed data to predict these variables. The 
details for applicability of remotely sensed 
data to predict the selected properties are 
reported by Rahmati (2016) and Rahmati et 
al. (2014, 2015, 2016) and will not be 
outlined here. The main purpose of the 
current article is to focus on the feasibility 
of remote sensing for prediction and 
mapping of the soil infiltration and its 
parameters.  

We intended to model the parameters of 
GAM, KM, and MKM models because the 
previously published results (Rahmati et al. 
2016) revealed that these models showed 
the best conformity with the measured 
infiltration data compared to other applied 
models including Horton and Philip’s two- 
and three terms models. We aimed at 
development of PTFs to provide an easy 
and fast method to predict the parameters of 
the three selected models using soil readily 
available data.  

PTFs development methodology  
To develop PTFs, we employed the 
following steps in a consecutive order: 
1- All input and output variables were 
normalized to assign data between zero and 
1 using the following formula: 

min

max min

i
i

X XZ
X X





                              (1) 

2- Applying all data sets outlined above, 
we evaluated the Pearson correlation 
coefficients between input variables and the 
investigated parameters including 
infiltration rates at different time intervals 
and parameters of GAM (Ka and b), KM (α 
and b), and MKM (α, b, and c) models to 
find out the most important and significant 
predictors in PTFs development. We 
selected only those input variables with 
significant correlations for the next step. 
3- Using selected predictors from previous 
step, we applied three types of polynomials 
including first, second, and third order 
polynomials to develop PTFs to predict the 
investigated parameters. The general forms 
of the applied polynomials were as follows: 
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PTFs evaluations  
In order to evaluate PTFs, we split data sets 
into two groups of training (75%) and test 
(25%). We used the training data to develop 
PTFs and the test data were used to 
evaluate results in an independent manner. 
We evaluated PTFs’ accuracy applying root 
mean square error (RMSE), evaluation 
error (ER), and Nash-Sutcliffe (E) criteria 
between measured and predicted values: 
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where, Xm and Xp are measured and 
predicted saturated hydraulic 
conductivities, respectively with mean 
value of mX for measured one. A value of 
RMSE near zero denotes a better accuracy 
of the method. ER tries to present the 
standardized RMSE error in percent with 
lower values of ER implying better 
accuracy and vice versa. The E has a range 
[–∞, 1]; E = 1 shows a perfect match; E = 0 
means that the average of observed values 
is as good as predicted values; for E <0, the 
model is worse for prediction than taking 
only the mean of the observed values; E 

>0.9 shows that the slope between observed 
and predicted values is near unity. 
 
Results 
Table 1 reports statistical description of the 
measured soil properties. Nearly all parts of 
the study area have coarse textured soils 
consisting of sandy loam, loam, sandy clay 
loam, and sand texture classes. Table 2 
reports statistical parameters of the 
measured initial and final infiltration rates 
in the study area as well as antecedent and 
field saturated soil moisture contents. We 
considered the soil infiltration rate at first 
step (first 30-second) as initial soil 
infiltration rate. 

 
Table 1. Statistical parameters of measured features in the current study  

Parameters Maximum Minimum Mean CV (%) 

Texture* 
Clay (%) 38.83 5.35 17.36 32.66 
Silt (%) 48.01 6.21 25.56 26.66 
Sand (%) 84.68 33.59 56.08 16.87 

Aggregate stability* (%) 95.92 25.14 65.37 27.51 
Saturated hydraulic conductivity** (cm/h) 48.60 1.03 6.68 79.19 
Bulk density** (g/cm3) 1.49 1.20 1.35 3.70 
Particle density** (g/cm3) 2.65 2.21 2.48 4.44 
Organic carbon* (%) 2.05 0.10 0.85 45.88 
Electrical conductivity* (mS/cm) 1.20 0.30 0.69 37.68 
Moisture content* (cm3/cm3) Step 1 0.287 0.105 0.169 18.93 

Step 2 0.264 0.087 0.150 20.67 
*: measured in 225 disturbed soil samples; **: measured in 135 undisturbed soil samples, CV: coefficient variation 
 
Table 2. Statistical description of infiltration rate and antecedent and field saturated moisture contents in 
the study area 

Parameter Minimum Maximum Mean Coefficient 
variation (%) 

Initial infiltration rate (cm/h) 2.23 33.48 13.15 50.72 
Final infiltration rate (cm/h) 0.391 7.65 2.59 61.00 
Antecedent moisture content (%) 0.04 0.29 0.14 42.86 
Field saturated moisture content (%) 0.33 0.54 0.44 11.36 

   
Tables 3 to 6 report simple Pearson 

correlation coefficients (R) between ground 
measured and remotely sensed data and 
investigated parameters. Table 3 reveals 
that nearly all ground measured data 
excluding EC, OC, and Dp had significant 
correlations with infiltration rates at 
different time intervals. The OC and Dp 
were also significantly correlated with 
infiltration rates at higher time intervals. 
Among the ground-measured data, Ks had 
the highest correlations with infiltration 
rates with R value between 0.811 and 0.977 
while θi and CC ranked second and both 
negatively correlated with infiltration rates 

showing R value between -0.476 and -
0.645. Sa, Db, θfs, WAS, and Si are the 
other parameters which were significantly 
correlated with infiltration rates at different 
time intervals. 

Table 4, reporting R value between 
ground measured data and parameters of 
GAM (Ka and b), KM (α and b), and MKM 
(α, b, and ic) models, shows that parameter 
ic of MKM model had the highest 
significant correlation with Ks scoring R at 
0.977. The correlations between parameter 
Ka of GAM, parameter a of KM and MKM 
with the respective R values of 0.917, 
0.958, and 0.735 ranked the third.  
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Tables 5 and 6 report R values between 
the investigated parameters and soil surface 
reflectance of different bands of ETM+ 
data. The tables report no significant 
correlations with the exception of Band4. 
Band4 of ETM+ showed significant 
correlations with infiltration rates at time 
intervals 0.5 to 8 minutes as well as 

parameters of the investigated infiltration 
models. Although the obtained R value 
between Band4 of ETM+ and the 
investigated parameters were low (around -
0.2), the existence of significant correlation 
between remotely sensed data and 
infiltration parameters brings hope for 
further investigations. 

 
Table 3. Pearson correlation coefficient (R) between soil readily available data and infiltration rates at 
different time intervals (n=134) 
Parameter± Ks Db θfs θi WAS CC Si Sa OC Dp EC 

In
fil

tra
tio

n 
ra

te
 (c

m
/h

) 

0.5 0.857 -0.385 0.314 -0.545 0.128 -0.634 -0.248 0.542 0.090 -0.144 -0.051 
1 0.848 -0.362 0.302 -0.539 0.159 -0.619 -0.230 0.520 0.092 -0.142 -0.008 

1.5 0.833 -0.334 0.289 -0.493 0.174 -0.611 -0.231 0.517 0.124 -0.167 0.038 
2 0.834 -0.332 0.274 -0.492 0.176 -0.625 -0.222 0.518 0.115 -0.159 0.027 

2.5 0.832 -0.334 0.284 -0.520 0.189 -0.608 -0.209 0.499 0.089 -0.117 0.041 
3 0.833 -0.320 0.298 -0.538 0.206 -0.599 -0.186 0.476 0.074 -0.105 0.042 

3.5 0.812 -0.362 0.277 -0.487 0.212 -0.632 -0.159 0.474 0.085 -0.124 0.040 
4 0.811 -0.390 0.255 -0.476 0.202 -0.643 -0.146 0.470 0.103 -0.147 0.034 
6 0.926 -0.326 0.326 -0.602 0.216 -0.545 -0.162 0.429 0.164 -0.229 0.058 
8 0.937 -0.336 0.324 -0.639 0.215 -0.534 -0.172 0.429 0.148 -0.209 0.050 
10 0.946 -0.360 0.322 -0.645 0.210 -0.537 -0.162 0.423 0.148 -0.224 0.047 
15 0.971 -0.381 0.379 -0.621 0.197 -0.530 -0.176 0.429 0.176 -0.230 0.012 
20 0.973 -0.382 0.390 -0.628 0.192 -0.527 -0.177 0.429 0.169 -0.222 0.008 
25 0.974 -0.384 0.379 -0.631 0.195 -0.528 -0.174 0.427 0.170 -0.227 0.005 
30 0.972 -0.392 0.394 -0.622 0.204 -0.522 -0.175 0.425 0.182 -0.237 0.003 
35 0.976 -0.401 0.405 -0.614 0.194 -0.531 -0.174 0.429 0.189 -0.243 -0.006 
40 0.977 -0.400 0.406 -0.606 0.196 -0.519 -0.173 0.421 0.194 -0.246 -0.002 
45 0.977 -0.396 0.416 -0.602 0.195 -0.514 -0.177 0.422 0.189 -0.246 -0.009 

±: All reported correlations were significant at P < 0.05 probability level excluding underlined ones 
Ks in cm/h, Db and Dp in g/cm3, θi and θfs in cm3/cm3, WAS and OC in %, CC, Si, and Sa in g/g, and EC in dS/m 
 
Table 4. Pearson correlation coefficient (R) between soil available data and parameters of GAM, KM, 
and MKM models (n=134) 

Parameter± 
GAM ai K b I   

 

KM 
bI at  

 

MKM 
b

cI at +i t  

Ka b a b ic a b 

Ks 0.917 0.791 0.958 0.373 0.977 0.735 0.044 
Db -0.333 -0.298 -0.376 -0.034 -0.396 -0.268 0.107 

θfs 0.328 0.304 0.355 0.223 0.416 0.168 -0.287 
θi -0.568 -0.490 -0.613 -0.187 -0.602 -0.516 -0.128 

WAS 0.250 0.134 0.212 0.187 0.195 0.187 0.214 
CC -0.542 -0.507 -0.572 0.136 -0.514 -0.592 -0.051 

Si -0.141 -0.261 -0.178 0.018 -0.177 -0.164 0.031 
Sa 0.410 0.481 0.455 -0.091 0.422 0.456 0.005 

OC 0.166 0.133 0.156 0.228 0.189 0.057 0.063 
Dp -0.207 -0.196 -0.211 -0.246 -0.246 -0.097 -0.080 

EC 0.088 -0.050 0.034 0.066 -0.009 0.092 0.230 
±: All reported correlations were significant at P < 0.05 probability level excluding underlined ones 
Ks in cm/h, Db and Dp in g/cm3, θi and θfs in cm3/cm3, WAS and OC in %, CC, Si, and Sa in g/g, and EC in dS/m 
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Table 5. Pearson correlation coefficient (R) between soil surface reflectance of ETM+ bands and 
infiltration rates at different time intervals (n=134) 

Parameter± Band1 Band2 Band3 Band4 Band5 Band61 Band62 
In

fil
tra

tio
n 

ra
te

s (
cm

/h
) 

0.5 -0.078 -0.054 -0.023 -0.202 -0.052 0.065 0.066 

1 -0.093 -0.072 -0.038 -0.220 -0.069 0.053 0.054 

1.5 -0.119 -0.103 -0.066 -0.267 -0.087 0.028 0.031 

2 -0.116 -0.101 -0.062 -0.277 -0.082 0.039 0.040 

2.5 -0.109 -0.091 -0.054 -0.259 -0.065 0.046 0.047 

3 -0.076 -0.065 -0.026 -0.262 -0.047 0.065 0.066 

3.5 -0.073 -0.062 -0.023 -0.246 -0.045 0.095 0.096 

4 -0.071 -0.061 -0.028 -0.252 -0.070 0.084 0.084 

6 -0.044 -0.041 -0.025 -0.199 -0.077 0.048 0.052 

8 -0.003 -0.004 0.008 -0.180 -0.062 0.073 0.076 

10 0.001 0.000 0.009 -0.169 -0.064 0.077 0.081 

15 -0.010 -0.006 0.005 -0.153 -0.052 0.041 0.045 

20 -0.008 -0.005 0.004 -0.144 -0.048 0.043 0.046 

25 -0.007 -0.004 0.004 -0.139 -0.048 0.038 0.041 

30 -0.005 -0.002 0.007 -0.131 -0.042 0.044 0.048 

35 0.002 0.007 0.015 -0.122 -0.038 0.042 0.046 

40 -0.007 -0.002 0.007 -0.121 -0.037 0.034 0.038 

45 -0.007 0.000 0.007 -0.117 -0.033 0.032 0.036 
±: Only underlined correlations were significant at P < 0.05 probability level  
 
Table 6. Pearson correlation coefficient (R) between soil surface reflectance of ETM+ bands and 
parameters of different infiltration models (n=134) 

Parameter± 
GAM ai K b I   

 

KM 
bI at  

 

MKM 
b

cI at +i t  

Ka b a b ic a b 
Band1 -0.044 -0.103 -0.032 0.156 -0.007 -0.086 0.024 

Band2 -0.046 -0.077 -0.027 0.116 0.000 -0.082 -0.018 
Band3 -0.024 -0.046 -0.009 0.083 0.007 -0.045 0.003 

Band4 -0.226 -0.212 -0.189 0.031 -0.117 -0.299 -0.320 
Band5 -0.068 -0.045 -0.059 0.073 -0.033 -0.102 -0.076 

Band61 0.043 0.038 0.055 -0.048 0.032 0.087 0.062 
Band62 0.046 0.039 0.058 -0.042 0.036 0.087 0.059 

±: Only underlined correlations were significant at P < 0.05 probability level  
 
Applying regression analysis, we 

developed three polynomials with first to 
third orders between the investigated 
parameters (soil infiltration rates at 
different time intervals (18-time intervals) 
and parameters of GAM, KM, and MKM 
models) and ground-measured data.  

Applying second and third order 
polynomials resulted in very slight 
improvement in PTFs accuracy (with 

average E 0.796 for the first order 
polynomial vs. 0.813 and 0.827 for the 
second and third orders, respectively). 
However, they comprise higher numbers of 
coefficients, which make their use more 
complicated. Therefore, the results for 
second and third order polynomials are not 
outlined here. Table 7 reports the accuracy 
for the developed PTFs through training, 
test, and complete datasets. Since the 
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number of developed PTFs is high (25 
equations), we decided to report the PTFs 
coefficients only (Table 8).  

According to Table 7, the developed 
PTFs offer higher accuracies to predict 
infiltration rates at different time intervals 
showing E between 0.719 and 0.964 for the 
training dataset, 0.553 to 0.965 for the test 
data set, and 0.727 to 0.960 for the 
complete dataset. In addition to PTFs for 
infiltration rates, we developed several 

other PTFs to predict the parameters of the 
investigated infiltration models. The 
developed PTFs led to accurate predictions 
of parameter ic of GAM, parameter a of 
KM, and parameter ic of MKM with E 
higher than 0.783 for the training, test, and 
all data sets. However, they showed very 
low accuracies for predictions of the 
parameter b of KM, and parameter a of 
MKM with E being lower than 0.264.  

 
Table 7. The accuracy of developed PTFs to predict the investigated parameters using ground measured 
data (n=134) 

Parameter 
Train Test All data 

RMSE ER E RMSE ER E RMSE ER E 

In
fil

tra
tio

n 
ra

te
s 

0.5 0.089 25.25 0.804 0.114 34.90 0.774 0.096 27.66 0.795 
1 0.095 29.01 0.775 0.090 27.77 0.792 0.094 28.71 0.779 

1.5 0.093 30.89 0.752 0.100 39.29 0.729 0.095 32.74 0.748 
2 0.122 31.23 0.759 0.125 34.35 0.757 0.122 31.96 0.759 

2.5 0.124 35.49 0.731 0.109 26.79 0.783 0.120 33.14 0.746 
3 0.114 31.47 0.781 0.131 42.21 0.590 0.119 33.89 0.747 

3.5 0.115 32.63 0.760 0.121 33.01 0.553 0.117 32.73 0.727 
4 0.110 33.06 0.719 0.108 33.77 0.754 0.109 33.23 0.728 

6 0.057 23.95 0.869 0.067 24.52 0.907 0.060 24.17 0.885 
8 0.055 21.22 0.911 0.071 21.10 0.901 0.059 21.34 0.910 

10 0.053 19.19 0.923 0.050 20.49 0.925 0.052 19.49 0.924 
15 0.043 13.79 0.954 0.054 18.63 0.949 0.046 14.98 0.953 

20 0.041 14.84 0.949 0.052 14.37 0.962 0.044 14.79 0.956 
25 0.040 14.12 0.961 0.048 14.84 0.955 0.042 14.37 0.960 

30 0.041 14.43 0.962 0.053 18.11 0.914 0.045 15.45 0.952 
35 0.042 13.81 0.964 0.052 14.61 0.948 0.044 14.10 0.960 

40 0.043 14.16 0.957 0.048 15.56 0.963 0.045 14.52 0.959 
45 0.042 14.23 0.957 0.048 14.88 0.965 0.043 14.43 0.960 

G
A

M
 ic 0.072 22.28 0.885 0.096 24.75 0.783 0.078 23.18 0.863 

b 0.097 54.66 0.626 0.108 47.37 0.712 0.100 52.56 0.661 

K
M

 a 0.049 15.25 0.948 0.061 22.32 0.884 0.052 16.85 0.937 

b 0.147 29.82 0.222 0.160 30.85 -0.099 0.150 30.11 0.157 

M
K

M
 a 0.122 37.23 0.696 0.162 39.89 0.370 0.133 38.31 0.634 

b 0.167 27.26 0.264 0.204 31.85 -0.074 0.177 28.55 0.183 
ic 0.043 13.89 0.958 0.043 15.72 0.967 0.043 14.30 0.961 

 Mean 0.081 24.53 0.803 0.091 26.48 0.747 0.083 25.02 0.794 
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Table 8. Coefficients of developed polynomials (PTFs) to predict the investigated parameters using 
ground measured data 
Parameter Intercept Ks Db θfs θi WAS CC Si Sa OC Dp EC 

In
fil

tra
tio

n 
ra

te
s 

0.5 -14.536 0.659 -0.033 0.024 -0.004 - 7.843 11.57 12.898 - - - 

1 -16.018 0.585 0.067 0.041 -0.063 - 8.593 12.76 14.154 - - - 

1.5 -1.724 0.586 0.152 0.009 -0.081 0.040 0.794 1.39 1.686 - - - 

2 -0.542 0.740 0.122 -0.061 -0.068 0.053 0.107 0.57 0.739 - - - 

2.5 -7.400 0.772 0.125 -0.015 -0.082 0.086 3.893 5.88 6.626 - - - 

3 12.661 0.702 0.117 0.059 -0.131 0.072 -7.157 -9.80 -10.82 - - - 

3.5 0.235 0.630 0.062 0.042 -0.069 0.034 -0.374 - 0.050 - - - 

4 0.287 0.537 0.045 -0.001 -0.090 0.040 -0.360 - 0.020 - - - 

6 0.121 0.703 0.079 -0.040 -0.096 0.025 -0.126 - -0.029 - -0.007 - 

8 -3.298 0.752 0.100 -0.054 -0.119 0.054 1.730 2.67 2.940 - 0.023 - 

10 0.164 0.702 0.117 -0.036 -0.198 0.044 -0.112 - -0.018 - -0.021 - 

15 -6.385 0.828 0.058 0.005 -0.092 0.015 3.412 5.08 5.628 0.036 0.028 - 

20 -3.154 0.811 0.033 0.006 -0.122 0.027 1.697 2.57 2.835 - 0.011 - 

25 -3.492 0.829 0.067 0.019 -0.102 0.016 1.818 2.79 3.060 0.060 0.034 - 

30 -8.039 0.807 0.051 0.046 -0.098 0.016 4.337 6.39 7.055 0.024 -0.026 - 

35 -0.220 0.826 0.044 0.060 -0.139 0.014 0.030 0.27 0.265 0.063 0.008 - 

40 -6.544 0.870 0.023 0.045 -0.068 -0.008 3.526 5.19 5.719 0.057 0.015 - 

45 -3.889 0.916 0.072 0.033 -0.037 0.011 2.094 3.03 3.388 0.005 0.002 - 

G
A

M
 

ic -0.004 0.932 0.197 -0.067 -0.059 0.074 -0.112 - -0.036 - 0.075 - 

b -7.103 0.484 0.084 0.005 -0.034 - 3.795 5.59 6.285 - -0.022 - 

K
M

 a -11.379 0.789 0.095 -0.013 -0.128 0.032 6.148 9.09 10.005 - -0.019 - 

b 0.350 0.248 - 0.055 -0.074 0.058 - - - 0.071 0.022 - 

M
K

M
 ic -8.678 0.883 0.029 0.049 -0.035 -0.006 4.678 6.83 7.547 0.043 0.024 - 

a 0.388 0.444 0.184 - -0.252 0.086 -0.464 - -0.038 - - - 

b 0.585 - - -0.326 - 0.259 - - - - - 0.15
2 

 
In addition to ground-measured data, we 

also applied remotely sensed data from 
ETM+ images to predict the investigated 
parameters. For this, we evaluated the 
relationships between infiltration rates at 
different time intervals (0.5, 1, 1.5, 2… and 
45 minutes) and soil surface reflectance of 
ETM+ bands to predict soil infiltration rate 
more directly using surface soil reflectance. 
Since we previously showed that only soil 
surface reflectance from Band 4 of ETM+ 
data had significant correlations with the 
investigated parameters, we were not able 
to develop strong PTFs for parameters 
predictions. Even second and third order 
polynomials did not result in better 
accuracies for parameters predictions. The 
best developed PTF had E 0.103 and the 

others were near zero showing that if we 
use the average value of the measured 
parameters, it would be as good as the 
predicted values by the developed PTFs. 
Therefore, we do not supply details for the 
results here. 

We also intended to predict the 
investigated parameters using the soil 
properties which are predictable by remote 
sensing data. In this regard, the input 
variables were restricted to soil moisture 
content, soil separates, soil organic carbon, 
and soil salinity because previously 
published results of the same study area 
revealed the applicability of the remotely 
sensed data to predict these properties 
(Rahmati et al. 2014, 2015, 2016; Rahmati, 
2016). 
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Table 9. The accuracy of developed PTFs to predict the investigated parameters indirectly using remotely 
sensed data (n=134) 

Parameter Training Test All data 

 Time RMSE ER E RMSE ER E RMSE ER E 

In
fil

tra
tio

n 
ra

te
s 

0.5 0.131 38.91 0.609 0.167 43.93 0.409 0.141 40.51 0.561 

1 0.133 42.08 0.608 0.148 41.17 0.021 0.137 41.88 0.530 
1.5 0.146 48.01 0.424 0.089 37.06 0.712 0.134 46.55 0.491 

2 0.180 45.87 0.500 0.159 45.09 0.515 0.175 45.75 0.506 
2.5 0.165 45.06 0.530 0.177 50.04 0.425 0.168 46.28 0.506 

3 0.175 50.63 0.409 0.134 36.32 0.739 0.165 47.20 0.510 
3.5 0.164 43.77 0.431 0.130 42.88 0.689 0.156 43.78 0.511 

4 0.151 45.28 0.481 0.128 40.66 0.626 0.146 44.30 0.517 
6 0.110 45.87 0.586 0.152 56.02 0.365 0.122 49.13 0.525 

8 0.132 47.10 0.537 0.127 47.29 0.625 0.131 47.15 0.561 
10 0.125 46.96 0.564 0.121 44.90 0.579 0.124 46.46 0.568 

15 0.127 39.34 0.641 0.136 51.63 0.574 0.129 41.93 0.631 
20 0.141 47.17 0.508 0.148 50.02 0.603 0.143 47.87 0.537 

25 0.118 43.65 0.620 0.151 41.73 0.625 0.127 43.33 0.634 
30 0.123 42.13 0.631 0.127 45.63 0.634 0.124 42.96 0.632 

35 0.124 38.08 0.692 0.166 58.31 0.419 0.135 42.99 0.629 
40 0.127 41.01 0.668 0.161 53.80 0.473 0.136 44.33 0.620 

45 0.137 42.87 0.616 0.130 54.24 0.521 0.135 45.12 0.608 

G
A

M
 ic 0.141 44.46 0.542 0.128 44.24 0.618 0.138 44.45 0.562 

b 0.158 31.60 0.088 0.144 29.22 0.154 0.155 31.04 0.103 

K
M

 a 0.159 47.09 0.435 0.120 35.66 0.676 0.150 44.55 0.494 
b 0.132 70.11 0.438 0.137 70.35 0.225 0.134 70.18 0.395 

M
K

M
 a 0.149 42.11 0.530 0.179 54.40 0.384 0.157 45.12 0.492 

b 0.185 29.36 0.042 0.207 35.42 0.027 0.191 30.80 0.049 

ic 0.144 47.71 0.557 0.101 34.18 0.782 0.135 44.86 0.613 

 Mean 0.143 44.25 0.507 0.143 45.77 0.497 0.144 44.74 0.511 
 

Similar to previous steps, we applied the 
first to third order polynomials to develop 
PTFs for the parameters’ predictions in this 
step, too. Since reporting all developed 
PTFs (75 equations) seems redundant, we 
initially compared the results to check if the 
second and third order polynomials had 
affected the accuracy of the PTFs. 
According to the results, the third order 
polynomial showed the best performance 
via training data set (with average E being 
0.640) compared to the first and second 
order polynomials (with respective average 
E being 0.507 and 0.583). However, the 
performance of the first order polynomial 
was similar to or better than the second and 

third order polynomials via test data set 
(with average E 0.497 vs. 0.412 and 0.483). 
Therefore, we selected the first order 
polynomial for simplicity. Table 9 reports 
the accuracy of the developed PTFs (first 
order polynomial) to predict the 
investigated parameters. Table 10 reports 
the coefficients of the developed PTFs.   

The results revealed that the developed 
PTFs led to relatively accurate predictions 
of infiltration rates at different time 
intervals with E values between 0.409 and 
0.692 for the training data set, 0.409 and 
0.712 for the test data set (excluding 
infiltration rate at time interval of one 
minute with E value of 0.021), and 0.491 to 
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0.634 for all data set. The results also 
revealed moderate accuracies for prediction 
of parameters of the investigated infiltration 
models. Based on the training data set, the 
developed PTFs showed E to be between 
0.435 and 0.557 to predict parameters of the 
investigated infiltration models excluding 
parameter b of GAM (with E of 0.088) and 

parameter b of MKM (with E 0.042) 
models. According to the test data, the 
developed PTFs also consisted of 
moderately high accuracies showing E 
values between 0.384 and 0.782 excluding 
parameter b of GAM (with E = 0.154), KM 
(with E = 0.225), and MKM (with E of 
0.027). 

 
Table 10. Coefficients of developed polynomials (PTFs) to predict the investigated parameters using 
indirect remote sensing data 
Parameter time Intercept θi CC Si Sa OC EC 

In
fil

tra
tio

n 
ra

te
s 

0.5 2.307 -0.462 -1.378 -1.207 -1.258 - - 

1 -7.556 -0.491 4.032 6.547 7.322 - - 
1.5 -6.300 -0.356 3.370 5.444 6.100 - - 

2 -3.468 -0.489 1.752 3.448 3.810 - - 
2.5 12.419 -0.511 -6.963 -9.014 -10.048 - - 

3 -4.416 -0.434 2.244 4.131 4.535 - - 
3.5 0.837 -0.405 -0.611 - -0.029 - - 

4 0.759 -0.327 -0.628 - -0.021 - - 
6 0.734 -0.489 -0.431 - -0.106 - - 

8 -7.740 -0.541 4.197 6.725 7.349 - - 
10 0.776 -0.533 -0.469 - -0.068 - - 

15 -2.497 -0.701 1.330 2.588 2.833 0.319 - 
20 -0.903 -0.546 0.428 1.381 1.430 - - 

25 8.365 -0.589 -4.681 -5.979 -6.681 0.233 - 
30 10.391 -0.607 -5.807 -7.559 -8.451 0.286 - 

35 17.247 -0.697 -9.523 -12.939 -14.398 0.437 - 
40 -7.851 -0.661 4.176 6.832 7.414 0.330 - 

45 -1.432 -0.766 0.748 1.785 1.870 0.362 - 

G
A

M
 ic 0.852 -0.496 -0.526 - -0.074 - - 

b -13.461 -0.403 7.381 10.965 12.206 - - 

K
M

 a 3.492 -0.545 -1.979 -2.077 -2.360 - - 

b 0.495 - - - -0.138 - 0.216 

M
K

M
 ic 2.151 -0.672 -1.262 -1.050 -1.275 0.336 - 

a 0.810 -0.463 -0.561 - - - 0.022 
b 0.570 - - - - - 0.135 

 
Discussion 
Determination of soil infiltration rate and 
its parameters are of the most time 
consuming, costly, and highly needed soil 
characteristics. Therefore, several 
researchers, e.g., Jemsi et al. (2013), Kashi 
et al. (2014), Sarmadian and Taghizadeh-
Mehrjardi (2014), and Rahmati (2017), 
attempted to develop several PTFs to 

predict soil infiltration and its parameters 
using soil readily available characteristics. 
In this regard, we intended to develop 
several PTFs to predict soil infiltration rates 
at different time intervals and parameters of 
three well-known infiltration models 
including Green and Ampt (GAM), 
Kostiakov (KM), and modified Kostiakov 
(MKM) using soil readily available 
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characteristics. The above-mentioned 
models were selected based on previously 
published results, showing that they had the 
most conformity with measured infiltration 
data (Rahmati et al. 2016).  

Several field or laboratory measured 
data including soil separates, Ks, Db, Dp, 
WAS, θi and θfs, OC, and EC were used as 
input variables to develop PTFs. Soil 
infiltration rates were also measured in 
different points of the study area. In order 
to develop PTFs, we initially examined the 
correlation coefficients between the 
investigated parameters. Results revealed 
that there were significant and high 
correlation coefficients in most cases 
(Tables 3-6) which were promising to find 
PTFs that are more applicable. According 
to the very complicated process of 
measuring infiltration rate and in order to 
more precisely predict the investigated 
parameters, we normalized all data to 
prevent different dimensions’ effects on 
PTFs development.  

Applying ground measured data, we 
developed 25 PTFs (Table 8) to predict the 
investigated parameters including soil 
infiltration rates at different time intervals 
(0.5 to 45 minutes) and parameters of three 
infiltration models including GAM (Ka and 
b), KM (a and b), and MKM (a, b, and ic). 
According to the E criteria, the developed 
PTFs showed high accuracies to predict 
infiltration rates at different time intervals 
having E of 0.719 to 0.964 through training 
data set. In addition to E, the PTFs showed 
also high accuracies based on ER criteria 
showing ER of 13 to 36 %. The developed 
PTFs also showed high accuracies among 
test data set showing E of 0.553 to 0.972 
and ER of 14 to 42%. However, excluding 
the developed PTFs for infiltration rates at 
3 and 3.5 minutes resulted in much better 
accuracies with E of 0.729 to 0.965 and ER 
of 14 to 39 % nearly close to those of the 
training data set. Assessing the regression 
coefficients revealed that Ks, Db, θfs, θi, CC, 
and Sa were the most recurrent input 
variables in the developed PTFs. However, 
WAS, Si, OC, and Dp were other soil 
characteristics which were included in some 
cases.  

The developed PTFs to predict the 
parameters of infiltration model also 
showed relatively high accuracies. 
According to the training data set, 
parameters ic of the GAM, a of KM, and ic 
of MKM with the respective E of 0.885, 
0.948, and 0.958 and with respective ER of 
22, 15, and 14 % were predicted with the 
highest accuracies. While parameter b of 
KM and MKM showed the worst 
accuracies with the respective E of 0.222 
and 0.264 and with respective ER of 30 and 
27 %. Excluding parameter b of KM and 
MKM and parameter a of MKM, the 
developed PTFs also showed acceptable 
accuracies via test data set with E of higher 
than 0.712.  

According to the Pearson correlation 
coefficients between the investigated 
parameters and soil readily available 
characteristics (Table 3 and 4), soil Ks was 
the most effective input variable in all 
developed PTFs. However, soil separates, 
bulk density, antecedent soil moisture, and 
OC were the other major soil 
characteristics, which were included in 
nearly all cases. As outlined above, 
parameter b of the KM and MKM models 
showed the worst accuracy among all 
employed PTFs. In line with our results, 
Karimi (2010) also developed several PTFs 
to predict parameters of several infiltration 
models using soil readily available 
characteristics. Their results also revealed 
that developed PTFs had very low 
accuracies to predict parameter b of KM 
model showing R2 of 0.13. It seems that 
linking parameter b of the KM and MKM 
models is much complicated, and we may 
need to include many other soil 
characteristics in PTFs development. The 
results by Karimi (2010) showed that the 
most accurate PTF was the one for the 
parameter S of the Suitzenderber model 
showing R2 of 0.82. Mahdian et al. (2009) 
also developed several PTFs to predict 
cumulative performance of 585 infiltration 
measurements besides determining several 
soil physical properties. Their results 
showed that there were no significant PTF 
to predict cumulative infiltration. 

Focusing on readily-availability of the 
input data to develop PTFs, remote sensing 
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data are among the valuable 
multidisciplinary sources of data that most 
researchers in all branches have concern 
about it. The applicability of the remote 
sensing data has been tested by soil 
scientists (Sidike et al. 2014, Gorji et al. 
2015, Rahmati et al. 2015, 2016, Scudiero 
et al. 2015, He et al. 2016, Yee et al. 2016, 
Rahmati and Hamzehpour 2017), we tested 
this application for assessing the soil 
infiltration, as well. Therefore, we 
attempted at linking different parameters of 
soil infiltration directly to surface soil 
reflectance of ETM+ data or indirectly to 
soil properties, which are predictable by 
remote sensing data. In order to utilize 
remotely sensed data to estimate the 
different parameters of soil infiltration, we 
linked soil infiltration rates at different time 
intervals (0.5 to 45 minutes) to surface soil 
reflectance form ETM+ data. Although 
there were significant correlations between 
soil infiltration rates and surface reflectance 
of band 4 of ETM+ data, we could not 
develop a robust PTF to predict infiltration 
rates using surface reflectance. In order to 
provide an indirect way of utilizing remote 
sensing data in infiltration rates prediction, 
we also linked soil infiltration rates at 
different time intervals to soil properties. 
For this, Table 10 reports the 18 PTFs 
developed to predict soil infiltration rates at 
different time intervals having E values of 
0.409 to 0.692 for the training data set. 
Excluding the developed PTFs for 
infiltration rates at time intervals 1 and 6 
minutes, PTFs showed acceptable 
accuracies through test data set (with E of 
0.409 to 0.739), as well. The obtained 
results reveal that although direct linkage 
between soil infiltration parameters to 
remotely sensed data seems complicated; 
one could use it in infiltration parameters 
prediction in an indirect mode. However, 
we assume that researchers may need to 
conduct more investigation for more details 
especially in bare soil.  

Several researchers have discussed PTFs 
applications for prediction of soil 
infiltration rates at different time intervals. 
For example, Dashtaki et al. (2010) 
developed several PTFs to predict 
cumulative infiltration at different time 

intervals using soils readily available data. 
They reported that the applied PTFs 
underestimated cumulative infiltrations. 
Arshad et al. (2010) also developed some 
PTFs to predict infiltration rate using soil 
readily available characteristics and linear 
regression and artificial neural network 
(ANN) methods. They showed that PTFs 
developed by linear regression and ANN 
methods led to errors of 52 and 118 cm per 
day, respectively. Haghighi et al. (2010) 
applying PTFs to estimate final infiltration 
rate using three most applied infiltration 
models including MKM, Philip and the 
Horton models showed that the Horton 
model provided the best estimate of the 
final infiltration rate. Kashi et al. (2014) 
applying PTFs to predict soil infiltration 
rate revealed that EC and bulk density were 
respectively the most and the least 
important predictors in soil infiltration 
prediction.  

We applied the same procedure to model 
the parameters of three well-known 
infiltration models including GAM, KM, 
and MKM equation using soil properties, 
which are predictable by remote sensing. 
For this, seven PTFs were developed (Table 
10) to predict parameters of GAM, KM, 
and MKM models. PTFs to predict 
parameters Ka and b of the GAM model had 
E of 0.542 and 0.088, while those to predict 
parameters α and b of KM model had E of 
around 0.44 and those to predict parameters 
α, b, and ic of MKM model had E of 0.530, 
0.042, and 0.557 through training data. The 
accuracy based on test data was nearly 
similar to those based on the training data. 
Similar to PTFs development using ground-
measured data, some parameters of 
investigated infiltration models showed 
very weak accuracies. However, the 
obtained results revealed that remote 
sensing data might be worthy to 
characterize soil infiltration rate or its 
parameters. We may need to conduct a 
detailed investigation on the use of remote 
sensing data to map infiltration rate in large 
watersheds. In order to get much accurate 
results, we need to take into account the 
different modeling methodologies including 
artificial neural networks, kriging, and co-
kriging methods.  
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Conclusion 

The current article intended to develop 
several PTFs to estimate soil infiltration rate 
and its parameters using both 
field/laboratories measured and remotely- 
sensed data. We applied linear and nonlinear 
regression analysis to develop PTFs to 
predict infiltration and its parameters. 
Results showed that field/laboratory 
measured data provide relatively high 
accuracies in predicting different parameters 
of soil infiltration. We applied remotely- 
sensed data in two forms of direct (surface 

reflectance) and indirect (soil properties 
which are predictable by remotely-sensed 
data) to develop PTFs. Although direct 
application of remotely sensed data resulted 
in no applicable PTF, indirect application of 
remotely-sensed data led to several PTFs, 
which were able to estimate soil infiltration 
rate and its parameters with acceptable 
accuracies. Therefore, these promising 
results showcase a new application of 
remotely-sensed data to predict one of the 
most time consuming and costly parameters, 
namely soil infiltration rate.   
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