Abaszadeh, N., Beheshtefar, M. and Morabi, M. 2012. Crop Type Mapping in Qazvin by Using Multi- Temporal Satellite Images: IRSC-LISSIII DATA. Journal of Environmental Research. 2(3), 87–96.
Aghaei, M. and Rezagholizadeh, M. 2011. Iran's comparative advantage in production of saffron. Journal of Agriculture Economy and Development. 25, 121–132.
Alavizade, S.A.M., Mirlotfi, M.R. and Naimabadi, N. 2016. The Effects of saffron economic stability of rural residents in the Darbeghazi district city of Nishabur. Journal of Saffron Agronomy and Technology. 4 (2), 133–142.
Alipour, F., Aghkhani, M.H., Abasspour-Fard, M.H. and Sepehr, A. 2014. Demarcation and Estimation of Agricultural Lands Using ETM+ Imagery Data (Case study: Astan Ghods Razavi Great Farm). Journal of Agricultural Machinery. 4(2), 244–254.
Amirshekari, H., Sorooshzadeh, A., Modarress Sanavy, A. and Jalali Javaran, M. 2007. Study of effects of root temperature, corm size, and gibberellin on underground organs of saffron (Crocus sativus L.). Iranian Journal of Biology. 19, 5–18. (In Persian).
Atkinson, P.M., Jeganathan, C., Dash, J. and Atzberger, C. 2012. Inter-comparison offour models for smoothing satellite sensor time-series data to estimate vegetation phenology. Journal of Remote Sensing of Environmentm. 123, 400-417.
Bashiri, M and Salari, A. 2016. Using geostatistics for zoning areas suitable for saffron cultivation in the Khorasan Razavi Province Based on Climatological Parameters. J Journal of Saffron Agronomy and Technology. 4 (2), 155–167.
Bouzarjmehri, k., Shikh Ahmadi, F. and Javani, K. 2016. Investigating financial impacts of cultivating saffron on rural families with an emphasis on unstainable agriculture (Case Study: Balavelayat Rural District, City of Bakharz). Journal of Saffron Agronomy and Technology. 4 (1), 63–73.
Cao, R., Chen, J., Shen, M. and Tang, Y. 2015. An improved logistic method for detectingspring vegetation phenology in grasslands from MODIS EVI time-series data. Journal of Agricultural and Forest Meteorology. 200, 9–20.
Chemura, A., Mutanga, O. and Dube, T. 2017. Integrating age in the detection and mapping of incongruous patchesin coffee (Coffea arabica) plantations using multi-temporal Landsat 8NDVI anomalies. International Journal of Applied Earth Observation and Geoinformation. 57,1–13.
Dehghani Bidgoli, R., Koohbanani, H. and Bashiri, M. 2018. Preparation of Map for Lands under Saffron Cultivation Using Timely Plant's Indicator Based Agronomic Calendar (Case study: Darbeghazi Village,Neyshabur province), Journal of Saffron Research (semi-annual). 6(1), 103-113.
Epiphanio, R., Dalla, V., Formaggio, AR., Rudorff, BFT., Maeda, EE. and Luiz. AJB. 2010. Estimating soybean crop areas using spectral‑temporal surfaces derived from MODIS images in Mato Grosso, Brazil. Journal of Pesquisa Agropecuária Brasileira. 45, 72‑80.
Kandasamy, S. and Fernandes, R. 2015. An approach for evaluating the impact of gapsand measurement errors on satellite land surface phenology algorithms: application to 20 year NOAA AVHRR data over Canada. . Journal of Remte Sensing of Environment. 164, 114–129.
Khozeymehnezhad, H., Farhangfar, H., Behdani, M.A. and Hassanpour, M. 2016. Assessment of Saffron Farmers Knowledge on the Issues Associated with Irrigation (Case Study: Southern Khorasan). Journal of Saffron Agronomy and Technology. 4 (1), 41–50.
Koocheki, A. 2013. Research on production of saffron in Iran: Past trend and future prospect. Journal of Saffron Agronomy and Technology. 1 (1), 3–21.
Koocheki, A., and Seyyedi, S.M. 2015. Phonological stages and formation of replacement corms of saffron (Crocus sativus L.) during growing period. Journal of Saffron Research. 3(2), 134–154. (In Persian)
Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M.K. and Ahuja, P.S. 2009. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Journal of Food Reviwe International. 25, 44–85.
Manjunath, KR., Potdar, MB. and Purohit, NL. 2002. Large area operational wheat yield model development and validation based on spectral and meteorological data. International Journal of Remote Sensing. 23, 3023–3038.
Masi, E., Taiti, C., Heimler, D., Vignolini, P., Romani, A. and Mancuso, S. 2016. PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Journal of Food Chemistry. 192, 75–81.
Mohtashami, T., Karbasi, A., Zandi, B. and Gharibi, D. 2016. Economic analysis and comparison of technical efficiency in small and large saffron farms of Khorasan Razavi province. Journal of Saffron Agronomy and Technology. 4(2), 119–132.
NASA (Ed.). 2011. Landsat 7 Science Data Users Handbook Landsat Project Science Office at NASA's Goddard Space Flight Center in Greenbelt. 186. Available at Web site http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf.
Pickup, G., Chewings, VH. and Nelason, DJ. 1993. Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Journal of Remote Sensing of Environmentm. 43, 243‑263.
Prasad, AK., Chai, L., Singh, RP. and Kafatos, M. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation. 8, 26–33.
Rahimzadegan, M. and Pourgholam, M. 2017. Identification of the area under cultivation of Saffron using Landsat-8 temporal satellite images (Case study: Torbat Heydarieh). Journal of RS and GIS for Natural Resources. 7(4), 97–115.
Salazar, L., Kogan, F. and Roytman, L. 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing. 28, 3795–3811.
Tewari. S., Kulhavy. J., Rock. B.N. and Hadas. P. 2003. Remote monitoring of forest response to changed soil moisture regime due to river regulation. Journal of Forest Sciences. 49, 429–438.
Yaghoubi, F., Jami Al-Ahmadi, M., Bakhshi., M.R. and Sayyari, M.H. 2016. Comparison of indicators of technical and economic water use efficiency in saffron and wheat production systems in the Qaenat region. Journal of Saffron Agronomy and Technology. 3(4), 277–288.
You, X., Meng, J., Zhang, M and Dong, T. 2013. Remote Sensing Based Detection of Crop Phenology for Agricultural Zones in China Using a New Threshold Method. Journal of Remote Sensing, 5, 3190–3211.