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Abstract  
Assessment of the impacts of climate change on water resources has been obtained 
significant attentions in the past decade. This paper assesses the climate change impacts on 
precipitation in the Minab basin, in the Hormozgan province in Iran. Two monthly 
precipitation downscaling methods were proposed based on multi-layer perceptron (MLP) 
and radial basis function (RBF) neural networks. The downscaling models were calibrated 
and validated using the large scale climatic parameters (predictors) derived from National 
Center for Environmental Prediction (NCEP)/ National Centre for Atmospheric Research 
(NCAR) reanalysis data set for downscaling monthly precipitation in the Minab basin in 
Iran. Pearson correlation was employed to choose the predictors among the NCEP/ NCAR 
reanalysis data set and final predictor combination for each station is assigned. The results 
of the downscaling models revealed that the MLP model produced more accurate and 
consistent results by downscaling the large scale climatic parameters compared to the RBF 
model. The proposed model can be reliably utilized for developing future projections of 
precipitation using the general circulation models outputs which can be employed also as 
the inputs in hydrological models. 
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Introduction  
Global Circulation Models (GCMs) are the 
most efficient and reliable tools to assess 
the impacts of climate change at regional 
scale (Wilby et al., 1998; Okkan and Inan, 
2015; Sachindra and Perera, 2016). These 
models explain the atmospheric processes 
by employing mathematical formulations. 
These models have a coarse resolution (tens 
to hundreds of kilometers) and they are not 
suitable to resolve sub grid scales features 
(such as topography and clouds). Moreover, 
their results are not applicable to study 
where requires information at a fine scale 
(Wilby et al., 2002; George et al., 2015; 
Akbari et al., 2016). In order to identify the 
impacts of coarse-scale atmospheric 
patterns at the local scale, downscaling 
techniques were developed (Fistikoglu, and 
Okkan, 2010). In the past decade, several 
downscaling approaches have been 
developed to tackle this problem. There are 
two main approaches which have been 
proposed for downscaling GCMs: dynamic 
downscaling and statistical downscaling 
(Christensen et al., 2007; Kang et al., 2015; 
Kourgialas et al., 2015). According to 
Murphy (1998), dynamic downscaling 
approaches generally employ regional 
climate models (RCMs) which utilize 
coarse GCM data as boundary conditions in 
order to acquire a higher spatial resolution 
at the local climate domain. Outputs of 
these models are highly sensitive to the 
biases accruing from the GCMs and they 
are more time-consuming compared to the 
statistical downscaling techniques (Giorgi 
et al., 2001; Anandhi et al., 2008; Lin et al., 
2016). 

According to Wilby et al. (1998), one of 
the most widely used methods in 
downscaling large scale climatic variables 
(predictors) to local scale (predictands) is 
statistical downscaling. These approaches 
were developed to construct relationships 
among large scale climatic parameters 
(predictors) and local surface parameters 
(predictands) (Wilby et al., 1998). 

In the recent years, the application of 
machine learning methods as statistical 
downscaling techniques has received much 
attention (Abdellatif et al., 2015; Joshi et 
al., 2015; Lua et al., 2016). Chen et al. 

(2010) employed support vector machine 
(SVM), multiple regression model and 
statistical downscaling model (SDSM) as 
statistical downscaling models for 
downscaling GCM outputs in the Shih-Men 
Reservoir basin in Taiwan. The results of 
this study indicated that the SVM model 
can offer more accurate and consistent 
results for generating daily precipitation 
properties. 

Hashmi et al. (2011) employed Gene 
Expression Programming (GEP) and 
statistical downscaling model (SDSM) to 
predict watershed precipitation using GCM 
simulated climatic variables at the Clutha 
River watershed in New Zealand. The study 
showed that the GEP based downscaling 
model performs better than the SDSM 
model in the case of precipitation 
downscaling.  

Acharya et al. (2013) evaluated the 
accuracy of extreme learning machine 
(ELM) and such multi-model ensemble 
(MME) approaches to estimate the 
Northeast monsoon rainfall from GCM 
large scale outputs to local scale in south 
peninsular India. The simulation results of 
this study indicated better performance of 
ELM-based models compared with other 
downscaling models. 

Kourgialas et al. (2015) applied artificial 
neural network (ANN) and principal 
component analysis (PCA) to predict 
hydrological extremes under climate 
change scenarios in the Koiliaris River 
basin. As demonstrated in the research, the 
ANN offered promising results for 
assessing the impacts of climate change as a 
statistical downscaling tool in this basin.  
Sarhadi et al. (2015) employed Support 
Vector Regression (SVR) and Relevance 
Vector Machine (RVM) as a statistical 
downscaling method to downscale global 
climate models (GCMs). Their results 
revealed the capability of the statistical 
downscaling by RVM to predict future 
variations in rainfall. 

Furthermore, Shenify et al. (2015) 
applied hybrid Support Vector Machine 
with Discrete Wavelet Transform (SVM- 
WT) model, artificial neural network 
(ANN) and genetic programming (GP) to 
predict precipitation in Serbia. The result of 
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the research indicated the superiority of the 
hybrid approach compared with other 
proposed models. The goal of this article is 
to identify a set of the most relevant large 
scale climatic input parameters (predictors) 
among NCEP/NCAR reanalysis data set for 
downscaling monthly precipitation in 
Minab basin in Iran. Furthermore, to 
investigate the results of downscaling to 
local scale variables such as precipitation 
using two machine learning approaches in 
the Minab basin, south-east of Iran. Overall, 
this research discusses the calibration and 
validation of multi-layer perceptron (MLP) 
and radial basis function (RBF) neural 
networks based statistical downscaling 
models in order to downscale monthly 
general circulation model outputs to 
monthly precipitation and thus aims to 
provide a comparison between the two 
data-driven techniques. The employed 
approaches are efficient and reliable in 
regenerating monthly precipitation time 
series for future assessment of climate 
change impacts.  

The reminder of this research is 
organized as follows. First, the study area 
and data are explained. The next section is a 
description of the employed artificial 
intelligence methods which are used to 
transform information from GCMs to local 
scale. The methodology proposed for 
downscaling of precipitation is provided 
and the results are then presented for further 
discussion. In the last part of this study the 
conclusions are presented. 

 
Materials and Methods 
Study Area and Data Collection 
The Minab basin in the Hormozgan 
province in Iran was selected as the study 
area for this research. This basin located 
between 56◦ 51' 07'' and 57◦ 53' 00'' 
longitude and 26◦ 51' 31'' to 28◦ 30' 25'' 
latitude (Figure 1). The Minab basin is 
under the influence of an arid and sub 
humid climate. The total area of the basin is 
10171 km2 and the annual average rainfall 
is around 185 mm which 80% occurs 
during winter and autumn. The normal 
mean monthly maximum and minimum 
temperatures of the region are 42◦C and 
20◦C, respectively. Due to the issue of 

water scarcity in the Minab basin, detailed 
and accurate precipitation forecasting can 
help water resource managers to apply 
more effective and sustainable policies to 
construct more reliable strategies.  There is 
only one meteorological station in the study 
area and therefore for more investigation, 
two nearest stations to the border of basin 
have been selected in this research. (Table 
1). The monthly rainfall records of these 
stations are obtained from the Iranian 
Meteorological Organization (www. 
weather.ir). 
 
The Multi-layer Perceptron (MLP) 
An artificial neural network (ANN) is a 
data processing method which has 
analogous performance to the biological 
neural networks of the human brain 
(Haykin, 1999). MLPs are the most popular 
and the simplest type of ANN. These 
approaches are widely used to construct the 
relationship between input and outputs 
(Ahmed et al., 2015). Multi-layer 
perceptron are feed-forward networks 
which include one or more hidden layers 
(Haykin, 1999). The MLP applied in this 
research contained a three-layer 
architecture consisting of an input layer, a 
hidden layer and an output layer.  Figure 2 
shows a typical MLP feedforward network 
for this study with one hidden layer. 
According to Hornik et al. (1989), the 
advantages of MLPs make this method easy 
to use and capable of estimating any 
input/output relation for more accurate 
prediction.  The Levenberg–Marquardt 
(LM) algorithm (Levenberg, 1944; 
Marquardt, 1963) is an efficient learning 
approach for multi-layer feedforward 
networks. This method is a modified 
version of the classic Newton approach for 
obtaining an optimum solution to the 
optimization problem. This method 
employs an approximation to the Hessian 
matrix in the following equation (Equation 
1). 

eJIJJxx TT
kk

1
1 ][ 
    (1) 

In which x is the neural network weights, J 
is the performance criteria Jacobian matrix 
and   and e are learning process parameter 
and residual error vector, respectively. The 
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LM training algorithm has been 
successfully applied in different studies 
(Banerjee et al., 2009; Chang et al., 2015). 

The methodology adopted for this research 
is illustrated in Figure 3. 

 
Table 1. Meteorological stations in the study area 

Station name Elevation (m) Latitude (◦N) Longitude (◦E) 
Kahnooj 469.7 28◦ 03' 57◦ 75' 
Rodan 200 27◦ 44' 57◦ 17' 
Minab 29.6 27◦ 15' 57◦ 05' 

 

 
 

Figure 1. Location map of the study region in Hormozgan Province of Iran (the aerial image 
obtained through the website of USGS). 

 
 

 
Figure 2. A schematic architecture of the three-layer ANN for the study area. 
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The Radial Basis Function (RBF) 
The RBFs have similar structure to the 
MLPs by one hidden layer (Haykin, 1999), 
the RBF simulates the precipitation by a 
network of Gaussian functions in the 
hidden layer and linear activation functions 
in the output layer. Figure 4 shows a typical 
RBF for the study area. According to 
Haykin (1999) for training the RBFs, self-
organized selection of centre has been 
selected which includes the following steps:   
1. Random selection of initial centre vectors 
(vJ). 
2. Calculation of Euclidean distance for the 
initial centre vectors. 
3. The new centre vector which is closest to 
the training sample was calculated using the 
following equation (Equation 2). 

)(* old
jpi

old
j

new
j vIxv    (2) 

where P is the training sample, J is the 
number of centre vector, i and  are the 
input node and the learning rate, 
respectively. 
4. The above mentioned steps were 
continued until no considerable change was 
observed for the centre vector. 
5. Calculation of spread parameter and 
output layer weights. 
6. Assessment of mean square error (MSE) 
value for training sample.  
7. The phases were carried out for a certain 
number of iteration. 

 

 
 

Figure 4. Schematic architecture of proposed RBF model. 
 

Evaluation Criteria 
In this research, three statistical indicators 
were used in order to assess the 
effectiveness of the two artificial neural 
network models developed. The assessment 
indicators include coefficient determination 
(R2), root mean square error (RMSE) and 
Nash-Sutcliffe (NS) which are obtained 
from the following equations: 
1) Root-mean-square error (RMSE) (Kim 
and Kim, 2008) 
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2) Coefficient of determination (R2) 
(Mohammadian et al., 2016) 
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3) Nash-Sutcliffe (NS): the optimal value is 
1, refers to the perfect fit (Vernieuwe et al., 
2005). 
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where the simulated and observed values 
are Pi and Oi respectively, the total number 
of test data is given by n and iO  is mean of 
observational values. 
 
Results and Discussion  
In this study the required information such 
as the monthly reanalysis data were 
obtained from the National Center for 
Environmental Prediction/National Center 
for Atmospheric Research (NCEP/NCAR) 
and precipitation (predictand) data at the 
selected stations were employed in the 
calibration and validation periods of the 
downscaling tools. The NCEP/NCAR 
reanalysis data set is outputs of a global 
circulation model (GCM) (Kalnay et al., 
1996) and many studies have utilized this 
data for the calibration and validation of 

their statistical downscaling models 
(Gautam et al., 2014; Yang et al., 2016). In 
a statistical downscaling, mathematical 
relationship between predictors and 
predictand is essential to convert GCM 
outputs to catchment scale. As mentioned 
before, in this research, predictor 
parameters were extracted from 
NCEP/NCAR data at the selected 
meteorological stations. The downscaling 
models were developed through employing 
the MLP and RBF approaches. In order to 
gain the optimum climatic parameters from 
the probable predictors, the Pearson 
correlation (Pearson, 1895) coefficient was 
utilized (Anandhi et al., 2008; Sachindra et 
al., 2013). The final optimum large scale 
atmospheric variables of the NCEP/NCAR 
dataset which were employed in this 
research are presented in Table 2. The 
predictors combination applied for the 
downscaling models consisted of Mean sea 
level pressure, 500 hPa specific humidity, 
precipitation, air temperature, 500 hPa and 
850 hPa geopotential heights. 

 

Table 2. Optimal combination of large scale climatic predictors utilized in the MLP and RBF models in 
each station 

Station Large scale parameters  

Kahnooj Mean sea level pressure, 500 hPa Geopotential, 850 hPa Geopotential, 
precipitation 

Rodan Mean sea level pressure, 500 hPa Geopotential, 500 hPa Specific 
humidity, precipitation 

Minab Mean sea level pressure, 500 hPa Geopotential, air temperature (2m), 
precipitation 

 
 

The first 80% of the predictor and 
precipitation data were allocated for the 
model calibration and the rest of the 
obtained data for the period of 2003-2015 
was allocated for the model validation. The 
performance of models in calibration and 
validation was assessed using the root mean 
square error (RMSE), Nash-Sutcliffe (NS) 
and coefficient of determination (R2). The 
optimum structure of MLP and RBF 
models including number of hidden layers, 
number of iterations and the number of the 
nodes in the hidden layers were specified 
using trial and error process for gaining 
precise and accurate outputs (Mohanty et 
al., 2010; Daliakopoulos et al., 2005). The 

activation function of the hidden layer and 
output layer were set as logsig and linear, 
respectively (Table 3). 

Table 4 gives the performance 
evaluation of MLP and RBF models 
through the R2, RMSE and NS criteria. The 
best MLP models for Kahnooj, Rodan and 
Minab stations had a testing RMSE of 
15.64 mm, 20.94 mm and 19.29 mm 
respectively (Table 4), and proved to be 
superior to the best RBF model, which had 
a testing RMSE of 17.26 mm, 24.21 mm 
and 21.16 mm for the mentioned stations. 
The lower RMSE values show that the best 
MLP model indicated slight differences 
between the observed and the downscaled 
precipitation at mentioned sites.  
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Table 3. The optimal parameters for the proposed downscaling models 
RBF MLP 

Number of layers 3 Number of layers 3 
Neurons Inputs: 4 Neurons Inputs: 4 
 Hidden: 25  Hidden: 25 
 Output: 1  Output: 1 
- - Number of iteration 250 
Activation function Sigmoid Activation function in hidden layer  

Activation function in output layer 
Logsig 
linear 

Learning rule - Learning rule Levenberg-Marquardt 
 

Table 4. Statistical parameters of model performance metrics in terms of RMSE and R2 for the 
different soft computing models tested in all the stations. 

Station Model 
Training phase  Testing phase 

RMSE 
(mm) 

Nash- 
Sutcliffe R2  RMSE 

(mm) 
Nash- 

Sutcliffe R2 

Kahnooj MLP 23.52 0.67 0.68  15.64 0.64 0.65 
RBF 24.53 0.64 0.65  17.26 0.56 0.57 

 MLP 23.37 0.69 0.7  20.94 0.66 0.68 
RBF 25.22 0.64 0.65  24.21 0.55 0.56 

Minab MLP 26.65 0.67 0.68  19.29 0.62 0.64 
RBF 28.51 0.62 0.63  21.16 0.55 0.56 

 
For Kahnooj, Rodan and Minab stations, 

in the testing phase, the MLP model 
obtained the best NS statics of 0.64, 0.66 
and 0.62 respectively (Table 4) which 
indicate that the overall quality of 
estimation of the MLP model is better than 
the RBF model according to NS. 

The best MLP models for Kahnooj, 
Rodan and Minab had a testing R2 of 0.65, 
0.68 and 0.64 respectively (Table 4), and 
were more efficient compared to the best 

RBF models, which had a testing R2 of 
0.57, 0.56 and 0.56 for mentioned stations. 
The higher R2 value reveals that the MLP 
model has outperformed the RBF model in 
both the training (calibration) period as well 
as in the testing (validation) period. In the 
validation period, the RBF model efficiency 
is less than 60% while the MLP model 
efficiency is 60%, which is a significant 
improvement over the RBF model results.  

 

 
Figure 5. Comparison of the MLP estimated daily precipitation with the observed daily precipitation in 
the testing period at Kahnooj station. 
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Figure 6. Comparison of the MLP estimated daily precipitation with the observed daily precipitation in 
the testing period at Rodan station. 
 

 
Figure 7. Comparison of the MLP estimated daily precipitation with the observed daily precipitation in 
the testing period at Minab station. 
 

 
 
Figure 8. Scatter plots of observed and downscaled precipitation for a training and b testing phases at 
Kahnooj station 
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Figure 9. Scatter plots of observed and downscaled precipitation for a training and b testing phases at 
Rodan station 
 

 
Figure 10. Scatter plots of observed and downscaled precipitation for a training and b testing phases at 
Minab station 
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developed downscaling models using 
artificial neural network (ANN) and 
autocorrelation techniques in the Amazon 
Basin. The results of this study indicated 
that the ANN as well as the autocorrelation 
model both provided a very good fit to the 
data. In another study, Hashmi et al. (2011) 
used Gene Expression Programming (GEP) 
and SDSM for statistical downscaling of 
precipitation at the Clutha River watershed 
of New Zealand. The results of this study 
showed that in the validation period, the 
SDSM model efficiency is less than 40% 
while the GEP model efficiency is 50%, 
which is a significant improvement over the 
SDSM model results. In another study, 
George et al. (2015) applied local 
polynomial regression, multiple linear 
regression and artificial neural network to 
predict he rainfall in the catchment of 
Idukky reservoir in Kerala, India. As shown 
in the study, the local polynomial 
regression offered a better performance in 
forecasting the rainfall in this basin. 
 
Conclusions 

In this study, the most explanatory climatic 
variables for an accurate downscaling of 
monthly precipitation at the selected 
meteorological stations in the Minab basin 
among NCEP/NCAR reanalysis parameters 
were determined using the Pearson 
correlation analysis. The mean precipitation 
of the Minab basin was considered as the 
predictand. The Pearson correlation 

indicated that the optimum NCEP/NCAR 
parameters as the Mean sea level pressure, 
500 hPa specific humidity, precipitation, air 
temperature, 500 hPa and 850 hPa 
geopotential heights.  

The statistical downscaling models for 
the three meteorological stations analyzed 
by using MLP and RBF approaches. The 
MLP and RBF models were compared with 
each other at three stations. The comparison 
of the results demonstrated that MLP model 
performed better than the RBF model. 
Additionally, the training and the testing 
phases of each station revealed that MLP 
can be utilized to downscale NCEP/NCAR 
data set to station scale. Hence, the 
presented MLP can be reliably used for 
downscaling the coarse spatial resolution of 
GCMs for getting the future projections of 
precipitation in the Minab basin. 

Overall, this resaearch proposed the 
application of soft computing 
methodologies that are constructive in 
assessment of climate change impacts in the 
basin scale. Thus, the proposed approaches 
can be employed to generate more accurate 
input parameters which are essential in 
water resources management and planning 
to tackle the related problems. 
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