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Abstract 

In this study, the process-based watershed model, Soil and Water 
Assessment Tool (SWAT), was used for simulating hydrology and sediment 
transport in the Gharesou watershed and for identifying critical areas of soil 
erosion and water pollution. After model calibration and uncertainty analysis 
using SUFI-2 (Sequential Uncertainty Fitting, ver. 2) method, the outputs of 
the calibrated model were used for assessing critical sediment source areas. 
Three pollution quantifying indices including a Load Impact Index (LII), a 
Concentration Impact Index (CII), and a load per nit area impact index 
(LUII), were computed based on the model outputs. The results indicated that 
despite lack and uncertainty of available data, SWAT model performance in 
simulating sediment transport in Gharesou watershed is quite acceptable. 
During calibration, the simulated monthly sediment loads matched the 
observed values with a Nash-Sutcliffe coefficient of 0.24 and PBIAS of -
17%. The values for validation period were 0.2 and -12.1% respectively, 
indicating the model’s weakness in simulating sediment dynamics and its 
capability in predicting average sediment load. Assessing spatial pattern of 
sediment indices showed that, in general, critical sub-watersheds based on 
LII are located in downstream areas of the watershed while sensitive sub-
watersheds in terms of CII are situated in the middle part and critical areas 
with respect to LUII are in upstream. On the basis of LUAII, eight percent of 
the watershed area yields about 60% of sediment load. Implementation of 
appropriate conservation practices in the critical areas has the potential to 
significantly reduce erosion and sediment transport. 
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1. Introduction 
Soil erosion is one of the most serious environmental degradation problem that 

adversely affects many natural and human-managed ecosystems. In agricultural 
watersheds, soil erosion not only removes nutrient-rich top soil on site, but also 
degrades water quality as a result of transported sediments off site (Lal, 1998; Zhu 
et al., 2013). Therefore, it is a major cause of reduced agricultural productivity and 
water pollution. 

Iran is among the most affected countries in the world in terms of the extent and 
intensity of soil erosion. Current estimates suggest that soil erosion in Iran is 
around 25 tons per hectare annually which is four times greater than that of the 
world average (Afshar et al., 2010; Jalalian et al., 1996; Moghadam et al., 2015). 
Land use changes mostly from rangeland to dry farming, has led to an 800% 
increase in soil erosion between 1951 and 2002 (Ahmadi, 1999; Nosrati et al., 
2011). Gharesou watershed in the northeastern part of the country has long been 
subjected to land use changes from forest to agriculture and urban areas resulting in 
increased soil erosion. Gharesou River tributaries originate from high mountain 
streams on the northern slopes of the Elburz Mountain Range. When these streams 
reach the lowlands downstream, they pass through agricultural fields and urban 
areas. The main river collects tributary waters as it flows westward, and finally 
drains into the Gorgan Gulf in the southeastern part of the Caspian Sea. Gorgan 
Gulf is a semi-enclosed water body which is connected to the Caspian Sea through 
a narrow natural channel (Figure 1). It is an important natural ecosystem in the 
southern part of the Caspian Sea as it is the habitat for sturgeon and cartilaginous 
fish and many migratory birds in the region (Taheri et al., 2012). However, 
because of its isolation and unique ecological conditions, this ecosystem is very 
fragile and prone to degradation. Runoff from agricultural fields adds nutrient-rich 
sediments to the Gharesou River water and contributes to water quality problems in 
the Gorgan Gulf. A high risk of eutrophication is expected in the Gulf because of 
increasing agricultural non-point sources (NPS) pollution, particularly as a result of 
phosphorus adsorbed into sediments. In recent years, algae blooms have been 
frequently reported in the region (Kideys et al., 2008; Nasrollahzadeh et al., 2008; 
Nasrollahzadeh et al., 2011; Ramezanpour et al., 2011; Soloviev, 2005).  

Strategies and policies of watershed management and implementation of soil 
and water conservation practices could effectively control soil erosion which is the 
main cause of NPS pollution in the Gharesou watershed, and mitigate the negative 
impacts of NPS pollution in the Gorgan Gulf. However, prior to any planning, it is 
important to assess the extent and rate of soil erosion and identify erosion hot-spots 
within the watershed. 

Since measured erosion and sediment data for the study area are scarce and the 
resources to conduct extensive field experiments are limited, hydrologic and water 
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quality modeling provides the only feasible way for estimating runoff and soil 
erosion and also assessing their spatial variability in the watershed.  

Process-based distributed watershed models that provide a realistic 
approximation of the watershed system are valuable tools for quantification and 
spatial distribution of runoff and soil loss processes across the watershed (Bieger et 
al., 2014; Russell and William, 2001). During recent years, there has been an 
increase in the development and use of these models (Borah and Bera, 2004; Yang 
and Wang, 2010). One of the most widely applied watershed models is SWAT 
(Arnold et al., 1998) which has been extensively used for simulating hydrologic 
and water quality processes in watersheds with a wide range of scales and 
environmental conditions (Arnold and Fohrer, 2005; Gassman et al., 2007). Several 
past studies indicated that SWAT is capable of modeling data-scarce and ungauged 
watersheds with reasonable accuracy (Bieger et al., 2014; Chaponniere et al., 2008; 
Kumar et al., 2015; Mekonnen et al., 2009; Ndomba et al., 2008; Nyeko, 2015; 
Panagopoulos et al., 2011; Schmalz et al., 2015; Stehr et al., 2008). 

The goal of this study is to assess spatial distribution of soil erosion and 
sediment transport in the Gharesou watershed where there are limitations in terms 
of data availability. The specific study objectives are to (1) calibrate, validate, and 
perform uncertainty analysis of the SWAT model for the watershed, and (2) 
identify critical source areas of sediment in the watershed. 

This is the first scientific study of its kind carried out in this watershed the 
results of which  will provide useful information for soil and water management in 
the Gharesou watershed which will help improve ecological conditions within and 
downstream of the watershed. 
 
2. Materials and methods 
2.1. Study Area  
     The Gharesou River is located in the Golestan Province in the northeastern part 
of Iran. The river has a drainage area of about 161,473 hectares which lies between 
longitudes 54°00′ and 54°44′E and latitudes 36°36′ and 37°01′N (Figure 1). The 
watershed is characterized by highly variable topography composed of mountains, 
piedmont plains, and lowlands. Its elevation ranges from 3,359 meters above the 
mean of sea level (m.a.s.l) near the origin of the Gharesou River in the Elburz 
Mountains to 46 m.a.s.l. at the outlet of the river in the Gorgan Gulf. The Gorgan 
Gulf is a semi-enclosed water body in the southeastern part of the Caspian Sea with 
about 60 kilometers (km) length and 12-km width. This region is known for its 
high economic and ecological importance as a fishing and recreational area 
because of appropriate biological conditions for aquatic animals (Bagheri et al., 
2015). The underlying geology of the watershed is mainly limestone formations, 
alluvial deposits near streams, and quaternary sedimentary formations in the 
lowlands of the study area. The majority of the soils in the watershed are loess 
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(windblown silts). In terms of their infiltration capacity or runoff potential, soils of 
the Gharesou watershed belong to hydrologic soil group B and C exhibiting 
moderate to low infiltration capacity. The main land use types in the watershed are 
agriculture (52%), forest (40%), rangelands (4.5%), and urban and rural residential 
(3%).  Since the watershed is situated between the Caspian Sea and Elburz 
Mountains, the climate of this area is generally moderate; the average annual 
temperature is 17 degrees Celsius and the mean annual rainfall is about 650 mm. 
However, both temperature and precipitation exhibit a considerable temporal and 
spatial variability throughout the watershed. Annual rainfall totals, in general, 
decrease from south to north and precipitation mostly occurs in winter and spring. 
The sub-climatic classification of the region is as follows: moderate semi-dry in the 
north, moderate semi-dry to semi-wet in the central flat areas, and cold semi-wet to 
cold semi-dry in the southern mountainous areas. Discharge in the Gharesou River 
is relatively high during winter and spring, but low in summer and fall. 
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Figure 1. Location of the Gharesou watershed 
 
2.2. Soil and Water Assessment Tool (SWAT) 

SWAT is a process-based, semi-distributed, and continuous-time watershed-
scale model that is designed to simulate hydrology as well as erosion and transport 
of sediment, nutrients, and agricultural chemicals in large ungauged watersheds 
(Neitsch et al., 2011). The model is capable of simulating main eco-hydrological 
processes including water flow, erosion, sediment, nutrient and pesticide transport, 
and plant growth. The necessary input data for the model includes a digital 
elevation model (DEM), soil and land-use maps and their corresponding databases, 
land management information, and daily precipitation and temperature data. For 
simulating watershed processes, SWAT first divides the watershed into sub-basins 
which are then further subdivided into hydrologic response units (HRUs). HRUs 
represent lumped areas within a sub-basin with a unique combination of land use, 
soil type, and slope (Neitsch et al., 2011).  Simulation of the hydrologic cycle is 
separated into land and water phases. The simulation of the land phase is based on 
the water balance equation (Equation 1) which is calculated separately for each 
HRU. Some of the processes simulated in the land phase include 
evapotranspiration (ET), surface runoff, infiltration, soil storage, lateral flow, 
groundwater recharge, and groundwater flow.  
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here SWt = final soil water content (millimeters); SW0 = initial soil water content 
(millimeters); t = simulation period (days); Rday = amount of precipitation on the ith 
day (millimeters); Qsurf = amount of surface runoff on the ith day (millimeters); Ea 
= amount of evapotranspiration on the ith day (millimeters); Wseep = amount of 
water entering the vadose zone from the soil profile on the ith day (millimeters)’ 
and Qgw = amount of base flow on the ith day (millimeters). Runoff (as well as 
sediment and agricultural chemical yields) from all HRUs within a sub-basin are 
summed to calculate the amount of water reaching the main channel in each sub-
basin. The water phase of the hydrologic cycle describes the routing of water in the 
river channel using the variable storage co-efficient method (Williams, 1969) or the 
Muskingum routing method (Linsley et al., 1958). Sediment yield is estimated for 
each HRU using the empirical Modified Universal Soil Loss Equation (MUSLE; 
Williams, 1975).  

CFRGLSPCKAreaqQSed USLEUSLEUSLEUSLEhrupeaksurf  56.0)(8.11   
   (2) 

 

where Sed = sediment yield on a given day (metric tons); Qsurf = surface runoff 
volume (millimeters per hectare); qpeak = peak runoff rate (cubic meters per 
second), Areahru = area of the HRU (hectare), KUSLE = universal soil loss equation 
(USLE) soil erodibility factor, CUSLE = USLE cover and management factor; PUSLE 
= USLE support practice factor, LSUSLE = USLE topographic factor, and CFRG = 
coarse fragment factor. The modified rational method is used to estimate peak 
runoff rate. The transport of sediment in the channel is controlled by two 
simultaneous operations, degradation and deposition, which are estimated based on 
the stream power equation (Williams, 1975; Bagnold, 1977). The methods and 
equations of all model components are described in detail in Neitsch et al. (2011). 
 
2.3. Data Availability and Preparation for SWAT Application 

Lack of data availability and poor data quality were major issues hampering 
hydrologic modeling of the Gharesou watershed. In this research, we overcame 
data limitations by combining data from different sources together with inputs from 
stakeholders and experts. 

As mentioned before, basic data required for the SWAT model include DEM, 
land-use, and soil and meteorological data. With regard to DEM, the Global Digital 
Elevation Model (GDEM) which is derived from Advanced Space borne Thermal 
Emission and Reflection Radiometer (ASTER) at 30 meter resolution was 
downloaded from the NASA reverb website (http://reverb.echo.nasa.gov). Land 
use and land cover data for the watershed were obtained from the Golestan 
Province Natural Resources Department. The data were interpreted from the 
LANDSAT imagery which was acquired in 2002. As we couldn’t find any 
information about the detailed characteristics of the vegetation required by the 
SWAT model, the land cover map class descriptions were used to reclassify the 
map to match the SWAT land cover and crop growth database. In the Gharesou 
watershed, soil map and detailed information for soil properties were not available, 
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thus we used a landform map provided by the Iranian Soil and Water Research 
Institute along with some soil profile data extracted from previous studies to 
represent soil information. Also, some soil parameters were extracted from the 
FAO global soil map of the Food and Agriculture Organization of the United 
Nations (FAO, 1995).  
 

 
Figure 2. (a) Land use, (b) landforms, (c) slope classes, and (d) gauge location maps for the 
Gharesou watershed. 
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Regarding meteorological data, both daily precipitation and maximum and 
minimum of the temperatures were obtained from the Golestan Province Regional 
Water Authority. Also, daily relative humidity, wind speed, and solar radiation 
were estimated by the model’s weather generator. The statistics used by the 
weather generator to simulate these variables were calculated using the time series 
of Gorgan synoptic station. Stream flow and sediment data for 5 gauges (4 within 
the watershed and 1 at the outlet) were available for model calibration and 
evaluation (Figure 2). Another data limitation was that the sediment measurements 
were normally conducted only once per month and in some cases a few times per 
year. 

 
2.4. Model Setup and Parameterization 
 Using Arc SWAT 2012, the Gharesou watershed and its sub-basins were 
delineated based on the 30-m DEM. The minimum drainage area required to define 
the detail of watershed stream network was set to 1.5 % of the watershed area. 
When a river gauging station was available for calibration and validation of the 
model, an outlet was inserted. Automatic sub-basin delineation based on the given 
threshold areas and manual input of sub-basin outlets generated 71 sub-basins. 
Also, based on land use, soil, and slope classes, the watershed was subdivided into 
388 HRUs (To define HRUs, 10% was selected as threshold for each land use, soil 
type, and slope class). 

After making a SWAT project, the Arc SWAT interface writes default values to 
all the SWAT parameters, which are highly generic. So, we tried to estimate 
realistic values for as many parameters as possible (based on a calculation 
procedure, literature research, or expert knowledge) before calibrating the model. 
Some of the most important pre-calibration parameter changes that were carried 
out are as follows: 

To account for the effect of elevation on temperature and rainfall (orographic 
effect) that is typically observed in mountainous regions, elevation bands were 
implemented in the SWAT model as proposed by Fontaine et al. (2002). We 
applied elevation bands to sub-basins that were located at higher elevations. The 
lapse rates of 6°C/km and 100 mm/km were applied to temperature and 
precipitation respectively based on the relationship between mean annual 
temperature (and precipitation) and elevation. 
Since Gharesou watershed is an agricultural-dominated watershed, the processes 
affecting water balance and sediment yield are highly influenced by agricultural 
land management practices. Therefore, typical management parameters and data 
(such as crops grown, tillage, fertilizer application, irrigation, and harvest 
operations) for dominant crops in the watershed were collected from different 
sources and applied in the SWAT model (Information Center of Ministry of Jahad-
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e-Agriculture; Golestan Jihad-e-Agriculture Organization website; Torabi et al., 
2012;  interview some local farmers). 
Because our soil data lacked some important soil hydraulic properties necessary for 
SWAT (such as bulk density, available water capacity, and saturated hydraulic 
conductivity), we used the equations of Saxton et al. (1986) to calculate these 
parameters from soil texture. We also used Williams (1995) equation to calculate 
USLE soil erodibility factor (K). 

The base flow filter program developed by Arnold et al. (1995) and modified by 
Arnold and Allen (1999) was used to separate surface runoff and base flow from 
daily stream flow data and give an estimate of the groundwater parameters alpha-bf 
(base flow alpha factor) and GW_DELAY (groundwater delay time).  

After inputting all the data, the SWAT model was run for the Gharesou 
watershed. Based on the observed data available for model calibration and 
validation, an 18-year period (1990 to 2007) was selected for simulation. The first 
five years of the simulation (1990-1994) were used for model warm-up in order to 
minimize uncertainties due to initial conditions. 
 
2.5. Model Calibration and Uncertainty Analysis  

Calibration of process-based distributed watershed models like SWAT is a 
challenging task (especially in data-poor conditions) because there are a large 
number of parameters that can vary spatially. Ideally, calibration should be 
process-based (i.e., take into account different watershed processes, e.g. 
evapotranspiration, base-flow, sediment transport, crop growth etc.) and spatially-
based to ensure thatvariability in the predominant processes for different 
landscapes or sub-watersheds is captured (instead of determining global watershed-
wide processes) (Arnold et al., 2012). 

In this study, we tried to perform a careful calibration of the SWAT model for 
the Gharesou watershed and provide the best representation of hydrologic and 
sediment transport processes in the area. Calibration was performed at several 
steps. During the calibration, we checked different model components to make sure 
the predictions are reasonable for the study of the watershed and consistent with 
those of previous studies. 

Following model simulation, the SWAT check program (White et al., 2012) 
was used to examine the model outputs. This program reads outputs from a SWAT 
project, creates process-based figures for visualization, and performs many simple 
checks to identify potential model problems. At this step a rough manual 
calibration was done for average annual water balance as described by Arnold et al. 
(2011). Average annual values of major water balance components (including 
evapotranspiration, surface runoff, and base flow) for the Gharesou watershed were 
determined using data and information from the previous studies along with the 
Base flow filter program. 
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Next, the SUFI-2 method (Sequential Uncertainty Fitting version 2; Abbaspour, 
2007) was used for auto-calibration; the SUFI-2 algorithm combines calibration 
with uncertainty analysis. In this method, initially, the user has to select a number 
of model parameters to be included in calibration and assign a set of meaningful 
parameter ranges to them. Then a set of Latin hypercube samples are drawn from 
the parameter ranges leading to n parameter combinations where n is the number of 
desired simulations. Next, SWAT is run n times and saves n time series of 
simulated output variables. The uncertainty which is referred to as the 95% 
prediction uncertainty (95PPU) is quantified at the 2.5% and 97.5% levels of the 
cumulative frequency distribution of all simulated output values. The goodness of 
model performance, in terms of calibration and uncertainty level, is evaluated using 
the P-factor and the R-factor indices. The P-factor is the percentage of the 
measured data bracketed by the 95PPU band. It ranges from 0 to 1 where 1 is ideal 
and means all of the measured data are within the uncertainty band (i.e., model 
prediction). The R-factor is the average width of the band divided by the standard 
deviation of the measured variable. It ranges from 0 to ∞ where 0 reflects a perfect 
match with the observation. Based on the experience, an R-factor of around 1 is 
usually desirable (Abbaspour et al., 2007; Rouholahnejad et al., 2012). SUFI-2 is a 
stochastic procedure and does not converge with any best simulation but it 
calculates standard goodness-of-fit measures such as R2 and the Nash-Sutcliffe 
efficiency (NSE) for each of n model runs and indicates the best simulation among 
them. 

Model calibration and validation was based on stream flow, sediment load, and 
wheat yield data. We adopted this multi-variable calibration approach because it 
was revealed that including more variables in calibration produces parameters 
reflecting more of the local processes, provides more realistic simulations (Gupta et 
al., 1999; Beven, 2006; Abbaspour et al., 2007; White and Chaubey., 2005; Cao et 
al., 2006). Including crop yield data in calibration is believed to give greater 
confidence on the representation of the watershed hydrology (the partitioning of 
water between soil storage, actual evapotranspiration, and aquifer recharge) and 
water quality (Faramarzi et al., 2009; Nair et al. 2011). The calibration process was 
started with yearly time-step focusing on those parameters that influence the 
amount of water, sediment load, and crop yield. After getting a relatively good 
match between predicted annual values and measured ones, we proceeded to 
monthly calibration and included some parameters that affected timing of the flow 
and sediment.  

Daily stream flow and sediment data for calibration were obtained from the 
Golestan Province Regional Water Authority. Sediment data were based on 
collected grab samples which were used to measure suspended solids. These data 
were extrapolated into equivalent monthly loads using the Load Estimator 
(LOADEST) program (Runkel et al., 2004). In this program, eleven regression 
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models are available to estimate sediment load as a function of stream flow, 
sediment concentration, and other data inputs. The method is well- documented 
and accepted as a valid means of calculating pollutant loads from a limited number 
of water quality measurements (Gassman, 2008). Wheat yield data were obtained 
from Agricultural Statistics and Information Center of Ministry of Jihad-e-
Agriculture of Iran. Data from 1995–2003 and 2004-2007 were used for calibration 
and validating the model respectively. The strength of calibration and uncertainty 
assessment was evaluated using P-factor and R-factor. In addition, three 
performance criteria including Nash-Sutcliffe efficiency (NSE), percent bias 
(PBIAS), and ratio of the root mean square error to the standard deviation of 
measured data (RSR) were calculated for simulations as a part of the model 
evaluation. 
 
2.6. Identification and Prioritization of Critical Areas 

The critical sub-watershed of the Gharesou watershed were identified based on 
average annual sediment outputs (loads and concentrations) by the calibrated 
SWAT model during  the study (1995-2007). Three pollution quantifying indices 
were computed to facilitate the identification of critical areas: Load Impact Index 
(LII), Concentration Impact Index (CII), and Load per Unit Area Index (LUAII). 
The LII is based on sediment loads in the sub-watersheds’ reaches and considers 
contributions of each sub-watershed as well as the entire upstream area. This index 
represents the cumulative effects of pollutant loading throughout the watershed 
(Tuppad and Srinivasan, 2008). The CII is based on sediment concentration level in 
the sub-watersheds’ reaches and considers contributions from each sub-watershed 
as well as the entire upstream area. CII is useful in identifying localized pollution 
concerns in tributaries under high and low flow conditions especially concerning 
aquatic health (Tuppad and Srinivasan, 2008). The LUAII is based on the average 
sediment load per unit area from each sub-watershed. This index only accounts for 
contributions of individual sub-watersheds and is used to effectively assign a 
priority to each sub-watershed (Tuppad and Srinivasan, 2008). 
Sub-watersheds were categorized into high, medium, and low priority areas using 
Natural Breaks method of classification (Jenks, 1967). Natural Breaks is a data 
clustering method designed to determine the best arrangement of values into 
different classes. The method seeks to minimize each class’s average deviation 
from the class mean, while maximizing each class’s deviation from the means of 
the other groups. In other words, the method seeks to reduce the variance within 
classes and maximize the variance between classes (McMaster, 1997). 
To capture more detailed distribution of critical sediment source areas within the 
watershed, a similar analysis was performed at HRU-level. 
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3. Results and Discussion 
3.1. Calibration/Validation of SWAT 
3.1.1 Water Balance and Stream flow 

The first model simulation predicted stream flow considerably higher than 
observed flows. Examining the model outputs using the SWAT check program 
revealed that the model was not able to correctly represent the hydrological balance 
of the Gharesou watershed. Surface runoff and lateral flow were overestimated 
while base flow was highly underestimated compared to those of the base flow 
filter program.  

The most sensitive parameters affecting hydrological balance of the watershed 
were used in the calibration process with the SUFI-2 program; calibration was first 
performed for annual time step. Once the proportions of evapotranspiration, surface 
runoff, and subsurface flow were established, the model was further calibrated at 
monthly time step. Monthly calibration was started from the upstream gauges—
namely, Pol Ordougah, Naharkhoran, Shastkola and Ghaz mahalleh—located in the 
outlet of the mountainous forest-dominated sub-basins (Figure 2) and showed poor 
results for these gauges. After a lot of iterations and parameter adjustments, there 
were still large discrepancies between simulated and observed hydrographs. 
Investigations suggested that the main cause of the poor results was attributed to 
inadequate representation of precipitation and temperature inputs for mountainous 
parts of the watershed. Because the precipitation and temperature gauges are 
located in the lower parts of the watershed (Figure 2), even after implementing 
elevation bands and precipitation and temperature laps rates, the model still could 
not capture the variability of temperature and precipitation caused by severe 
elevation variability. Another reason could be shortcomings of the SWAT model in 
simulating snow-dominated watersheds because snow parameters are not spatially 
defined (Fontaine et al., 2002) and SCS method cannot accurately simulate runoff 
from melting snow and on frozen ground (Maidment, 1992). 

Because the main sources of pollution in the Gharesou watershed are 
agricultural areas and the focus of this study was simulating runoff and erosion for 
the agricultural part of the watershed, in the end, it was decided to avoid modeling 
the upland forested sub-basins by including the four stream gauges as inlets in the 
SWAT project. After implementing the inlets, the simulation of lowland portion of 
the watershed resulted in a relatively good fit of the simulated and observed data. 
Calibration (validation) plots for monthly and annual flow at the Syahab gauge, at 
the watershed outlet, are shown in Figure 3. Model performance criteria for 
hydrologic calibration (validation) are given in Table 1.  

Visual comparison of the hydrographs (Figure 3) and the model evaluation 
statistics (Table 1) indicate that the observed and simulated flow data match quite 
well during both calibration and validation periods. According to the general 
performance ratings proposed by Moriasi et al. (2007), the simulation of Gharesou 
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River flow at monthly time step can be evaluated as “satisfactory” with NSE > 
0.50, RSR < 0.70, and PBIAS ± 25%. Specially, very low PBIAS values indicate 
that the average magnitude of simulated flows is very close to the observed ones. 
Uncertainty measures also indicate a good calibration result. The R-factor 
(thickness of uncertainty band) for calibration period is relatively small (around 1) 
and the P-factor shows that about 70 % of the observations are bracketed by the 
95PPU. A careful examination of the hydrographs (Figure 3) indicates that 
magnitude and timing of high flows are simulated quite well, but the recession of 
flow peaks are not simulated accurately which could be due to the limitation of the 
model in rigorously simulating groundwater flow to streams. There are also 
significant uncertainties in the peak values on several occasions. 
 

 
Figure 3. Plots of observed and simulated monthly stream flow (top) and annual stream 
flow (bottom) for Syahab gauging station; the shaded region on the monthly plot represents 
the uncertainty band corresponding to the final parameter ranges obtained in SUFI-2. 
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Table 1. Model performance statistics for monthly streamflow calibration (validation) 
results at Syahab gauging station 

Statistic Calibration Period  Validation Period 
Observed Simulated  Observed Simulated 

Mean (m3/s) 2.02 1.94  2.83 2.86 
Maximum peak (m3/s) 7.32 8.28  7.37 8.78 
SD (m3/s) 1.77 1.5  1.91 1.93 
R2 0.7  0.58 
bR2 0.59  0.54 
NSE 0.69  0.52 
PBIAS -4.2  0.9 
RSR 0.55  0.69 
RMSE 0.98  1.32 
P-factor 0.74  0.67 
R-factor 1.14  1.4 

 
3.1.2. Sediment Loads 

For calibrating the sediment yield component of the SWAT model, first we 
focused on the erosion process and sediment yield from the landscape. Calibration 
for average annual conditions was attempted first to ensure that annual sediment 
yields of different land uses were simulated reasonably. Sensitive parameters 
pertaining to sediment yield from the landscape (e.g., USLE_K, USLE_C, and 
HRU_SLP; definition of the parameters are given in Table 2) were adjusted until 
the specific sediment yield for forest and agricultural areas generally conformed to 
the reality. The channel parameters (e.g. CH_COV, CH_BNK_KD, CH_BNK_TC, 
etc.; Table 2) were then modified based on field observations and suggested the 
ranges defined in the literature, particularly SWAT model documentation. The 
calibration process was followed by a fine-tuning at the monthly time scale using 
sediment load data of the Syahab gauging station. Parameters used for the 
calibration of sediment load, their optimal ranges, and its final calibrated values are 
shown in Table 2.  

Calibration (validation) plots for monthly and annual sediment load at the 
Syahab gauge are displayed in Figure 4. Model performance criteria are given in 
Table 3. 

Simulation results for sediment load are not as good as those for stream flow. 
NSE for  calibration and validation periods could not exceed the value of 0.5, 
indicating that, in terms of trends, the results are not satisfactory (Moriasi et al., 
2007; Panagopoulos et al., 2011). However, PBIAS values are much less than ± 
50% limit which provides evidence that the model successfully predicted sediment 
yields in the whole simulation period; RSR values for calibration and validation are 
relatively higher than the recommended 0.7 limit. 
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Table 2. Sensitive parameters for the calibration of sediment load and their optimal ranges 
and fitted values calculated using SUFI -2 

Parameter Name1 Description Min 
value 

Max 
value 

Fitted 
Value 

r__USLE_K().sol______FRSD USLE soil erodibility factor -0.7 0 -0.116 

r__USLE_C{7}.plant.dat Min value of USLE C factor applicable to the 
land cover/plant -0.3 0.1 -0.272 

r__HRU_SLP.hru______FRSD Average slope steepness (m/m) -0.2 0 -0.023 
r__SLSUBBSN.hru______FRSD Average slope length (m) -0.2 0 -0.113 
r__USLE_P.mgt______FRSD USLE support practice factor -0.5 0 -0.371 
r__USLE_K().sol______AGRL USLE soil erodibility factor -0.3 0 -0.169 

r__USLE_C{28,56}.plant.dat Min value of USLE C factor applicable to the 
land cover/plant -0.25 0.1 0.091 

r__USLE_P.mgt______AGRL USLE support practice factor -0.2 0.1 -0.137 
v__CH_EQN.rte Sediment routing methods (2 = Kodatie model) 2 2 2 
v__CH_COV1.rte Channel bank vegetation coefficient 1.5 2.5 1.933 
v__CH_COV2.rte Channel bed vegetation coefficient 1.5 2.5 2.077 
v__CH_BNK_KD.rte Erodibility of channel bank sediment 0.001 0.5 0.018 
v__CH_BED_KD.rte Erodibility of channel bed sediment 0.001 0.5 0.010 
v__CH_BNK_TC.rte Critical shear stress of channel bank (N/m2) 100 400 200.6 
v__CH_BED_TC.rte Critical shear stress of channel bed (N/m2) 100 400 257.4 

1- The qualifier (v__) refers to the substitution of a parameter by a value from the given 
range, while (r__) refers to a relative change in the parameter where the existing parameter 
value is multiplied by (1 + a given value); The extensions (e.g. .sol, .plant.dat, .hru, etc.) 
refer to the SWAT file type where the parameter occurs, AGRR = agricultural, FRST = 
forest, and additional information on formatting parameters for SUFI-2 calibration can be 
found in the SWAT-CUP user’s manual (Abbaspour et al., 2014). 
 

Uncertainty analysis results indicate bracketing of around 70% of the observed 
data within the 95PPU band (Figure 4). The R-factors, however, are large (2.38 and 
2.87 for calibration and validation periods respectively) which indicate substantial 
uncertainties. Visual inspection of the plots in Figure 4 especially shows very large 
uncertainties at extreme events during both calibration and validation periods. The 
inaccuracies and uncertainties could be due to the following reasons: 

(1) Uncertainties in the input data especially poor representation of soil 
properties. As mentioned earlier, a soil map covering the entire watershed doesn’t 
exist, so we had to use a landforms map to represent spatial distribution of soil 
types. Moreover, some important soil attributes (such as SOL_AWC and USLE_K) 
were estimated based on soil texture data sampled at a few points across the 
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watershed. These inaccuracies could have a significant impact on the model 
outputs. 

(2) Uncertainties in the parameters. For some model parameters, particularly 
channel parameters (such as critical shear stress of channel bank and bed), direct 
measurement or exact estimation wasn’t possible. We could only make rough 
estimates based on field visits and the literature. So, they were allowed to vary in a 
wider range during the calibration which led to high uncertainty in the outputs; this 
was also the case for some soil parameters. 

(3) Dependence of sediment yield simulation on hydrologic simulation. The 
runoff and peak runoff rate are the main inputs of the MUSLE equation (Eq. 2) for 
erosion prediction. As a result, sediment simulation is directly linked to the runoff 
simulation. Consequently, the inaccuracies and uncertainties of runoff could 
propagate to sediment load prediction. Comparison of flow and sediment 
calibration (validation) plots (Figure 3 and Figure 4) clearly shows that large 
uncertainties in sediment load are often associated with high flow uncertainties. 

(4) Uncertainties in the observed data. Considerable uncertainty in sediment 
simulation is likely to be introduced by the observed data used for model 
calibration and validation. As mentioned earlier, an observed data set of sediment 
loads was estimated on the basis of flow-concentration regression models. 
Although the regression models carefully calibrated and gave good results, they are 
not truly “observed” data. Ferguson (1986) indicated that most of the rating curve 
estimates of instantaneous load are biased and tend to underestimate the actual 
loads. 
 
Table 3. Model performance statistics for monthly sediment load calibration (validation) 
results at Syahab gauging station 

Statistic Calibration Period  Validation Period 
Observed Simulated  Observed Simulated 

Mean (ton) 3244 2693  4574 4018 
Maximum peak (ton) 21881 24430  22727 35510 
SD (ton) 4530 4668  5353 6899 
R2 0.43  0.4 
bR2 0.37  0.35 
NSE 0.24  0.2 
PBIAS -17  -12.1 
RSR 0.76  0.85 
RMSE 3430  4721 
P-factor 0.76  0.65 
R-factor 2.38  2.87 
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Figure 4. Plots of observed and simulated monthly sediment load (top) and annual 
sediment load (bottom) for Syahab gauging station; the shaded region on the monthly plot 
represents the uncertainty band corresponding to the final parameter ranges obtained in 
SUFI-2. 
 

Overall, a relatively good temporal match between observed and simulated 
sediment loads (Figure 4) as well as low absolute values for PBIAS suggest that the 
calibrated SWAT model for the Gharesou watershed is fairly reliable especially for 
predicting the total volume of sediment yield on a long-term basis. It is noteworthy 
to mention that in this study our priority was to better represent the watershed 
processes during the model parameterization and calibration rather than performing 
a fully automatic calibration to produce better performance statistics. 

Being a semi-distributed process-based model, SWAT considers the main 
factors and processes affecting hydrology and sediment yield as well as the 
relationships between them across the watershed. So, the calibrated SWAT model 
for the Gharesou watershed is believed to reasonably represent runoff and soil 
erosion processes in the watershed. It could therefore be used for identifying the 
spatial distribution of runoff and soil erosion and also for predicting the effects of 
alternative land management options in the watershed. 
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3.2 Identified Critical Sub-Watersheds 
Figure 5 shows the sub-watersheds prioritized as high, medium, and low based 

on different types of impact indices. 
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Figure 5. Sub-watersheds prioritization based on (a) LII, (b) CII, and (c) LUAII 

 
Priority areas of LII were determined according to the sediment load for each 

reach. Out of 71 sub-watersheds delineated by ArcSWAT, 3 sub-watersheds fall 
under high, 21 sub-watersheds under moderate, and 47 sub-watersheds under low 
priority class. High priority areas are located near the watershed outlet and also 
near Gorgan city in the middle of the watershed. 

For the CII, priority areas were identified based on the sediment concentration 
in the reach. CII analysis identified 8, 26, and 37 sub-watersheds as high, medium, 
and low priority areas respectively. The high priority sub-watersheds are generally 
located in the vicinity of Gorgan city where erosion from urban development sites 
as well as intensive agricultural works cause higher water pollution. Also, some 
tributaries may have high sediment concentrations because of relatively low flows. 
Appropriate in-stream conservation practices (e.g. check dams and constructed 
wetlands) could be implemented in the critical reaches identified by LII and CII to 
improve water quality.   

In the LUAII method, the priority areas were identified based on the sediment 
load per area which normalizes each sub-watershed for comparison. From the 
LUAII analysis, it has been found that 10, 19, and 42 sub-watersheds fall under 
high, medium, and low sediment yield categories respectively. These sub-
watersheds cover 20% of the watershed area and contribute 41% of sediment yield. 
However, every part of the sub-watersheds doesn’t contribute the same amount of 
sediment yield to the stream. In most cases, there are only some portions of sub-
watersheds which contribute to sediment yield highly the result of which causes 
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sub-watershed to fall under critical zone. To identify these specific areas, HRU-
based analysis was performed. 
 
3.3 Identified Critical HRUs 

Figure 6 presents the spatial distribution sediment yield (LUAII) at HRU-level 
in the Gharesou watershed. 
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Figure 6. HRUs prioritization based on LUAII 

 
Ten HRUs (out of the total 388 HRUs) were found to be critical hotspots of soil 

erosion in the watershed. These HRUs cover only 1.6% of the watershed area, but 
account for about 21% of the total soil loss from the watershed. Forty four HRUs 
covering about 6% of the watershed area are classified as medium priority areas 
contributing 37% of the total sediment. The remaining 334 HRUs which represent 
more than 92% of the watershed area fall under low priority category and produce 
about 42% of the total sediment. A plot showing cumulative percent of sediment 
yield versus the contributing watershed area is given in Figure 7. It can be seen that 
the slope of the curve decreases with increasing contributing area (i.e. the 
cumulative sediment yield increases slowly). 
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Figure 7. Cumulative percent of sediment yield by percent of contributing watershed area 
 

Investigating spatial distribution of sediment yield across the watershed 
indicated that critical HRUs are mainly located in the upstream areas which are 
dominated by cultivated lands on steeper slopes and generally experience more and 
heavier rainfall events. This is in agreement with field observations in this study 
area. Implementation of on-farm BMPs (e.g. conservation tillage, contour farming, 
and terracing) is recommended in the critical areas to reduce soil erosion and 
sediment yield. LUAII-based prioritization at HRU-level contains more spatial 
detail than sub-watershed level, therefore, it could be more useful for soil and 
water conservation planning. 
 
4. Conclusion 

Hydrologic and water quality modeling of the Gharesou River watershed was 
conducted using the SWAT model to estimate water balance and sediment yield. 
Model parameterization and calibration procedures along with the techniques to 
overcome data limitations were described in the paper. Model evaluation results 
indicated that the Ghare -Sou watershed SWAT model is capable of providing 
reasonably accurate monthly stream flow prediction. However, its performance in 
predicting monthly sediment load is weak, although still fair and without serious 
bias as indicated by PBIAS statistic.  
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Using the calibrated SWAT model, critical areas of soil erosion and water 
pollution in the watershed were identified. Three types of impact indices were 
defined based on SWAT outputs of sediment load, sediment concentration, and 
sediment yield per unit area. Identified critical areas varied based on which impact 
index was used in the evaluation. It suggests that choosing a specific impact index 
should be based on managerial goals. For example, if the goal of a project is to 
protect aquatic health in the streams, it may be useful to use CII or if preventing 
sedimentation in the Gorgan gulf is most important, LII may be more appropriate. 
LUAII is useful to prioritize critical source areas irrespective of upstream 
influences. The LUAII demonstrated that some small areas are the source of 
disproportionately large amount of sediment and need most management 
interventions within the Gharesou watershed. 

The outputs of this study may serve as a quick and accurate guide for targeting 
soil and water conservation practices in the watershed. Several practices that are 
suitable for the study of watershed are currently being assessed to come up with the 
best alternative scenarios in terms of implementation costs and reduction of soil 
erosion and water pollution. 
 
Acknowledgements 

The authors would like to thank Yazd University for funding this study in the 
form of PhD students’ financial support program. 
 
References 
Abbaspour, K.C. 2014. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs 

— A User Manual: Swiss Federal Institute of Aquatic Science and Technology, 
Switzerland. 

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J. and 
Srinivasan, R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine 
Thur watershed using SWAT. Journal of hydrology. 333(2): 413-430. 

Afshar, F.A., Ayoubi, S., and Jalalian, A. 2010. Soil redistribution rate and its relationship 
with soil organic carbon and total nitrogen using 137 Cs techniques in a cultivated 
complex hillslope in western Iran. Journal of environmental radioactivity. 101(8): 606-
614. 

Ahmadi, H. 1999. Applied Geomorphology: Water Erosion, Vol. 1. Tehran, Iran: 
University of Tehran Publishing Institute (In Persian). 

Arnold, J.G., and Allen, P.M. 1999. Automated methods for estimating base flow and 
ground water recharge from streamflow records. Journal of the American Water 
Resources Association. 35(2): 411-424. 

Arnold, J.G., Allen, P.M., Muttiah, R., and Bernhardt, G. 1995. Automated base flow 
separation and recession analysis techniques. Groundwater. 33(6): 1010-1018. 

Arnold, J.G., and Fohrer, N. 2005. SWAT 2000: current capabilities and research 
opportunities in applied watershed modelling. Hydrological processes. 19(3): 563-572. 



22                                            Zare Garizi and Talebi / Environmental Resources Research 4, 1 (2016) 

Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., Haney, E.B., and Neitsch, S.L. 
2011. Soil and Water Assessment Tool input/output file documentation: Version 2009. 
Texas Water Resources Institute Technical Report, (365). 

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R. 
and Jha, M.K. 2012. SWAT: Model use, calibration, and validation. Transactions of the 
ASABE. 55(4): 1491-1508. 

Bagheri, H., Harami, S.R.M., and Bagheri, Z. 2014. Study of arsenic distribution in 
sediments of the southeastern Caspian Sea. International Journal of Basic and Applied 
Sciences. 4(1): 57-65. 

Bagnold, R.A. 1977. Bed load transport by natural rivers. Water Resources Research. 
13(2): 303-312. 

Beven, K. 2006. A manifesto for the equifinality thesis. Journal of hydrology. 320(1): 18-
36. 

Bieger, K., Hörmann, G., and Fohrer, N. 2014. Simulation of streamflow and sediment with 
the soil and water assessment tool in a data scarce catchment in the three Gorges region, 
China. Journal of environmental quality. 43(1): 37-45. 

Borah, D.K., and Bera, M. 2004. Watershed-scale hydrologic and nonpoint-source 
pollution models: Review of applications. Transactions of the ASAE, 47(3), 789-803. 

Cao, W., Bowden, W.B., Davie, T., and Fenemor, A. 2006. Multi‐variable and multi‐site 
calibration and validation of SWAT in a large mountainous catchment with high spatial 
variability. Hydrological Processes. 20(5): 1057-1073. 

Chaponniere, A., Boulet, G., Chehbouni, A., and Aresmouk, M. 2008. Understanding 
hydrological processes with scarce data in a mountain environment. Hydrological 
Processes. 22(12): 1908-1921. 

Faramarzi, M., Abbaspour, K.C., Schulin, R., and Yang, H. 2009. Modelling blue and green 
water resources availability in Iran. Hydrological Processes. 23(3): 486-501. 

Ferguson, R.I., 1986. River loads underestimated by rating curves. Water Resources 
Research. 22(1): 74-76. 

Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., and Hotchkiss, R.H. 2002. Development of 
a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool 
(SWAT). Journal of hydrology. 262(1): 209-223.  

Food and Agriculture Organization, 1995. The digital soil map of the world and derived 
soil properties. CD-ROM, Version 3.5, Rome. 

Gassman, P.W. 2008. A simulation assessment of the Boone River watershed: Baseline 
calibration/validation results and issues, and future research needs. PhD Dissertation. 
Iowa State University, Ames, Iowa. 

Gassman, P.W., Reyes, M.R., Green, C.H., and Arnold, J.G. 2007. The Soil and Water 
Assessment Tool: Historical Development, Applications, and Future Research 
Directions. Transactions of ASABE. 50: 1211–1250. 

Gupta, H.V., Bastidas, L.A., Sorooshian, S., Shuttleworth, W.J., and Yang, Z.L. 1999. 
Parameter estimation of a land surface scheme using multicriteria methods. Journal of 
Geophysical Research. 104: 19491-19503. 

Jalalian, A., Ghahsareh, A.M., and Karimzadeh, H. R. 1996. Soil erosion estimates for 
some watersheds in Iran. In International Conference on Land Degradation. 10 (14): 12-
13. 



Zare Garizi and Talebi / Environmental Resources Research 4, 1 (2016)                                        23 

Jenks, G. F. 1967. The data model concept in statistical mapping. International yearbook of 
cartography. 7(1): 186-190. 

Kideys, A.E., Roohi, A., Eker-Develi, E., Mélin, F., and Beare, D. 2008. Increased 
chlorophyll levels in the southern Caspian Sea following an invasion of jellyfish. 
International Journal of Ecology. 2(4):1-10. 

Kumar, S., Mishra, A., and Raghuwanshi, N.S. 2014. Identification of Critical Erosion 
Watersheds for Control Management in Data Scarce Condition Using the SWAT 
Model. Journal of Hydrologic Engineering. 2: 1-10 

Lal, R., 1998. Soil erosion impact on agronomic productivity and environment quality. 
Critical reviews in plant sciences. 17(4): 319-464. 

Linsley, R.K., Kohler, M.A., Paulhus, J.L., and Wallace, J.S. 1958. Hydrology for 
Engineering. McGraw-Hill, New York. 

Maidment, D.R. 1992. Handbook of hydrology. McGraw-Hill Inc. 
McMaster, R. 1997. In Memoriam: George F. Jenks. Cartography and Geographic 

Information Systems. 24(1): 56-59. 
Mekonnen, M.A., Worman, A., Dargahi, B., and Gebeyehu, A. 2009. Hydrological 

modelling of Ethiopian catchments using limited data. Hydrological processes. 23(23): 
3401-3408. 

Moghadam, B.K., Jabarifar, M., Bagheri, M., and Shahbazi, E. 2015. Effects of land use 
change on soil splash erosion in the semi-arid region of Iran. Geoderma. 241: 210-220. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. 
2007. Model evaluation guidelines for systematic quantification of accuracy in 
watershed simulations. Trans. Asabe. 50(3): 885-900. 

Nair, S.S., King, K.W., Witter, J.D., Sohngen, B.L., and Fausey, N.R. 2011. Importance of 
crop yield in calibrating watershed water quality simulation tools. Journal of the 
American water resources association (JAWRA). 47(6): 1285–1297. 

Nasrollahzadeh, H.S., Din, Z.B., Foong, S.Y., and Makhlough, A. 2008. Trophic status of 
the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity. 
Continental Shelf Research. 28(9): 1153-1165. 

Nasrollahzadeh, H.S., Makhlough, A., Pourgholam, R., Vahedi, F., Qanqermeh, A., and 
Foong, S.Y. 2011. The study of Nodularia spumigena bloom event in the Southern 
Caspian Sea. Applied Ecology and Environmental Research. 9(3): 141-155. 

Ndomba, P., Mtalo, F., and Killingtveit, A. 2008. SWAT model application in a data scarce 
tropical complex catchment in Tanzania. Physics and Chemistry of the Earth, Parts 
A/B/C. 33(8): 626-632. 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. 2011. Soil and water 
assessment tool theoretical documentation version 2009. Texas Water Resources 
Institute. 

Nosrati, K., Feiznia, S., Van Den Eeckhaut, M., and Duiker, S.W. 2011. Assessment of soil 
erodibility in Taleghan Drainage Basin, Iran, using multivariate statistics. Physical 
Geography. 32(1): 78-96. 

Nyeko, M. 2015. Hydrologic modelling of data scarce basin with SWAT Model: 
Capabilities and Limitations. Water Resources Management. 29(1): 81-94. 



24                                            Zare Garizi and Talebi / Environmental Resources Research 4, 1 (2016) 

Panagopoulos, Y., Makropoulos, C., Baltas, E., and Mimikou, M. 2011. SWAT 
parameterization for the identification of critical diffuse pollution source areas under 
data limitations. Ecological modeling. 222(19): 3500-3512. 

Ramezanpour, Z., Imanpour, J., Arshad, U., and Mehdinezhad, K. 2011. Algal blooms in 
the Caspian Sea. In the Intergovernmental Oceanographic Commission Newsletter on 
toxic algae and algal blooms. No. 44. 

Rouholahnejad, E. 2013. Modeling the hydrology of the Black Sea Basin and assessing the 
impacts of climate change and land use change on water resources (Doctoral 
dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 21-63. 

Runkel, R.L., Crawford, C.G., and Cohn, T.A. 2004. Load Estimator (LOADEST): A 
FORTRAN program for estimating constituent loads in streams and rivers. U.S. 
Geological Survey Techniques and Methods Book 4, Chapter A5, 69p. 

Russell, S.H., and William, W.D. 2001. Landscape erosion and evolution modelling. 
Kluwr. Pp. 

Saxton, K.E., Rawls, W., Romberger, J.S., and Papendick, R.I. 1986. Estimating 
generalized soil-water characteristics from texture. Soil Science Society of America 
Journal. 50(4): 1031-1036. 

Schmalz, B., Zhang, Q., Kuemmerlen, M., Cai, Q., Jähnig, S.C., amd Fohrer, N. 2015. 
Modelling spatial distribution of surface runoff and sediment yield in a Chinese river 
basin without continuous sediment monitoring. Hydrological Sciences Journal. 60(5): 
801-824. 

Soloviev, D. 2005. Identification of the extent and causes of Cyanobacterial bloom in 
September–October 2005 and development of the capacity for observation and 
prediction of HAB in the Southern Caspian Sea using Remote Sensing Technique. 
http://caspian.iwlearn.org/caspian-1/anomalous-algal-bloom/anomalous-algal-bloom, 
Last accessed 8/26/2015. 

Stehr, A., Debels, P., Romero, F., and Alcayaga, H. 2008. Hydrological modelling with 
SWAT under conditions of limited data availability: evaluation of results from a 
Chilean case study. Hydrological sciences journal. 53(3): 588-601. 

Taheri, M., Foshtomi, M.Y., Noranian, M., and Mira, S.S. 2012. Spatial distribution and 
biodiversity of macrofauna in the southeast of the Caspian Sea, Gorgan Bay in relation 
to environmental conditions. Ocean Science Journal. 47(2): 113-122. 

Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E. 2012. Documenting the process of wheat 
production in Gorgan. J. of Plant Production. 19(4): 19-42. 

Tuppad, P., amd Srinivasan, R. 2008. Bosque River environmental infrastructure 
improvement plan: Phase II BMP modeling report. Texas Water Resources Institute. 

White, K.L., and Chaubey, I. 2005. Sensitivity analysis, calibration, and validations for a 
multisite and multivariable swat model. J. American Water Resources Assoc. 41(5): 
1077‐1089. 

White, M.J., Harmel, R.D., Arnold, J.G., and Williams, J.R. 2014. SWAT check: A 
screening tool to assist users in the identification of potential model application 
problems. Journal of environmental quality. 43(1): 208-214. 

Williams, J.R. 1969. Flood routing with variable travel time or variable storage 
coefficients. Trans. ASAE. 12(1): 100-103. 



Zare Garizi and Talebi / Environmental Resources Research 4, 1 (2016)                                        25 

Williams, J.R. 1975. Sediment routing for agricultural watersheds. Water Resour. Bull. 
11:965–974. 

Williams, J.R. 1995. Chapter 25: The EPIC model. 909-1000. Computer models of 
watershed hydrology. Water Resources Publications. 

Yang, Y.S., and Wang, L. 2010. A review of modelling tools for implementation of the EU 
water framework directive in handling diffuse water pollution. Water resources 
management. 24(9): 1819-1843. 

Zhu, A.X., Wang, P., Zhu, T., Chen, L., Cai, Q., and Liu, H. 2013. Modeling runoff and 
soil erosion in the Three-Gorge Reservoir drainage area of China using limited plot 
data. Journal of Hydrology. 492: 163-175. 

 




