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Abstract1 

Beneficial Management Practices (BMPs) are important measures for 
reducing agricultural non-point source (NPS) pollution. However, selection 
of BMPs for placement in a watershed requires optimizing available 
resources to maximize possible water quality benefits. Due to its iterative 
nature, the optimization typically takes a long time to achieve the BMP trade-
off results which is not desirable in practice. In this study, an optimization 
model, consisting of a multi-objective genetic algorithm, ε-NSGA-II, in 
combination with the Soil Water and Assessment Tool (SWAT) and the 
parallel computation technique, is developed and tested in the Fairchild Creek 
watershed in southern Ontario of Canada. The two objectives are to minimize 
BMPs costs and maximize total phosphorous load reduction. The parallel 
computation allows the run of multiple SWAT models simultaneously and 
can reduce the ε-NSGA-II optimization time significantly to achieve the 
objective. The Pareto-optimal fronts generated between the two objective 
functions can be used to achieve desired water quality goals with minimum 
BMP implementation cost to support spatial watershed management and 
policy making. 
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1. Introduction 
In landscapes with intensive agriculture, there have been serious environmental 

problems such as soil erosion, groundwater pollution, and eutrophication due to 
non-point sources (NPS) pollution in rivers and lakes. In order to mitigate the 
adverse environmental effects of agricultural production, various conservation 
programs or regulations have been established to implement Beneficial 
Management Practices (BMPs) such as conservation tillage, nutrient management, 
and buffer strip. Though the study of BMPs has a long history, only until recent 
years there has been a practical progress in integrated evaluation of agricultural 
BMPs, e.g., the USDA Conservation Effects Assessment Program (CEAP, 2012), 
and the Watershed Evaluation of BMPs (WEBs, 2012) program in Canada. 

For policy and management purposes, it is critical to evaluate both the 
economic costs and water quality benefits of these BMPs in order to target 
locations for BMP implementation to achieve cost effectiveness. One typical 
approach is to apply mathematical programming algorithms to link economic and 
hydrologic models (e.g. Wu et al., 2006; Srivastava et al., 2003). These integration 
studies examined the cost effectiveness of single a BMP based on a single 
objective function that either minimized costs or maximized benefits. In recent 
years, genetic algorithms have been applied to integrate economic and hydrologic 
models, enabling the examination of the placement of multiple BMPs in 
agricultural watersheds based on a multi-objective function that optimizes both 
economic and water quality benefits (e.g. Rodríguez et al., 2011; Maringanti et al., 
2011; Gitau et al., 2004). Genetic algorithms allow the evaluation of numerous 
combinations of BMPs, leading to a more realistic evaluation of the cost 
effectiveness of conservation programs. These approaches include NSGA-II (Deb 
et al., 2002), eMOEA (Tan et al., 2003), SPEA2 (Zitzler et al., 2003), MOSCEM-
UA (Vrugt et al., 2003), and ε-NSGA-IIKollat and Reed (2006). According to 
Kollat and Reed (2006) and Tang et al. (2007), the ε-NSGAII greatly exceeds the 
performance of the NSGA-II, eMOEA, SPEA2, and MOSCEM-UA. In addition, 
the ε-NSGA-II includes adaptive population size and automatically termination 
conditions. Typically, ε-NSGA-II provides a trade-off (Pareto-optimal front) 
between multiple conflicting objective functions. The generated Pareto-optimal 
fronts can be used by decision makers to select a solution from an ensemble of 
solutions that will meet the economical constraint while generating the best 
possible environmentally effective solution in the watershed (Maringanti et al., 
2009).  

This paper presents a study on optimal selection and placement of BMPs to 
identify cost-effective solutions for NPS pollution reduction with a focus on total 
phosphorous (TP) at watershed scale. The proposed approach links in-stream water 
quality response to the adoption of BMPs including buffer strip, conservation 
tillage, and fertilizer reduction within a watershed by using the Soil and Water 
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Assessment Tool (SWAT). This paper first describes the proposed methodology, 
including definition of the multi-objective function, ε-NSGA-II algorithm, and 
parallel computation within a super computer system, and then presents an 
application of the proposed approach including optimization results and 
discussions in the Fairchild Creek watershed in southern Ontario, Canada. 
 
2. Materials and Methods 
2.1. Definition of Objective Functions 

The two objectives formulated in this study are to minimize BMPs cost and to 
minimize the TP load, which is simulated using the SWAT model. A multi-
objective optimization problem can be formulated as:  
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where ),...,,( 21 nxxxX  is an n-dimensional variable to be optimized, )(Xfi  is 

the ith objective function, )(Xgi  is the ith constraint condition, and X stands for a 
BMP application scheme. For a single BMP evaluation, X takes a Boolean value, 
i.e. either 0 or 1.For multiple BMP evaluation, e.g. three BMPs, X takes binary 
values of 000, 001, 010, 011, 100, 101, 110, and 111. The relative change of a 
contaminant loading output with X compared to its corresponding value at the 
baseline scenario can be an indicator of the environmental benefit, and can be 
expressed as:  

)(
)()()(

0
0

V
VXVXfV


                                                        (2) 

Where V(X) denotes the TP loading at the watershed outlet, for a BMP 
application scheme, and V(0) is the contaminant loading at the baseline condition 
without BMP implementation. The total BMP area, Af , for a BMP application 
scheme(ha) can be expressed as: 


i
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Where iA  is the area of ith hydrologic response unit (HRU) in SWAT, and ikx isa 
Boolean value representing the kth BMP scheme applied to the ith unit. The value 1 
indicates the given HRU with BMP application and 0 without BMP application. 
For the convenience of computation, the area of the unit, iA , is computed as a 
percentage of the entire watershed area. The economic cost of a BMP 
implementation scheme can be estimated as: 
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Where kw is the BMP cost per unit area ($/ha), and )(Xfc is the total cost ($) for 
the BMP application scheme. Three BMPs, buffer strip, conservation tillage, and 
fertilizer reduction, are evaluated in this study.  
 
2.2. The ε-NSGA-II Algorithm 

NSGA-II is a mimic of natural selection. To select the better one between two 
different individuals, two metrics, rank and crowding distance, are computed for 
each individual in current population. To define a rank value for each individual, 
the non-dominated individuals are all set to rank 1, which form the first front. 
Except the individuals in the first front, the remaining non-dominated individuals 
are set to rank 2, which are the individuals in the second front. Likewise, each 
individual is set to a rank value. The calculation of the crowding distance of each 
individual can be found in Deb (2002). To evolve a generation, three operators are 
applied on the individuals, selection, crossover and mutation. In the selection 
process, for two individuals, the one with smaller rank value is considered to 
outperform the other. If the two individuals have the same rank value, the one with 
higher crowding distance is selected.  

ε-NSGA-II is developed on the top of NSGA-II, and is viewed as ‘connected 
runs’ of NSGA-II. The new feature added to NSGA-II is the ‘ε-dominance 
archive’, which records the non-dominated individuals among different generations 
in a run. Within each generation, a parameter, ε, for each objective is prescribed. 
The ε vector of the objectives splits the search space to grids. Within each grid, if 
multiple individuals exist, only the one closest to the bottom left corner is added to 
the archive. Detailed descriptions of ε-NSGA-II can be found in Kollat and Reed 
(2006). 
 
2.3. Parallel Computation 

A supercomputer, SHARCNET, leveraging the parallel computing facilities was 
utilized in this study. It is contributed by 17 universities and colleges across 
Ontario, Canada, and is composed of over 20,000 cores, distributed in various 
systems designed for different purposes. Each SWAT run requires unique input 
files. To address this problem, given a number of N processors available, N-1 
folders are created for SWAT run respectively. Each folder contains three sets of 
files including SWAT executable file, SWAT input files, and SWAT output files, 
and the multiple SWAT runs are parallel with the Message Passing Interface 
(MPI). In a MPI environment, each processor is assigned a unique conservative 
integer starting from rank 0. For example, if 20 processors are available, the ranks 
of the processors would be from rank 0 through rank 19. Herein, rank 0 is in charge 
of selection, crossover, and mutation in a NSGA-II run, allocating individuals 
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evenly in current generation to the model simulation processors, and gathering 
objectives values from each processor after they are evaluated.  

Each SWAT model simulation processors corresponds to a folder, and each 
folder may need to deal with single or multiple individuals, depending on the 
number of individuals allocated by the rank 0 processor. With a single individual, 
the process to compute TP is: 1) modify the SWAT input files according to this 
individual, 2) run the SWAT executable file, and 3) extract the SWAT output file 
to calculate TP. In the case of multiple individuals, the individuals are evaluated 
one by one in sequence following the same steps in evaluating a single individual. 
After the individuals in current generation are evaluated, their corresponding TP 
and cost values are sent back to rank 0 for evolution. The individuals in current 
population of ε-NSGA-II are allocated evenly to N-1 processors with the MPI 
Scatter function, where N is the number of available processors. One of these 
processors (rank 0) is in charge of selection, crossover, and mutation. The ε-
NSGA-II applies dynamic population size in different “connected” NSGA-II runs, 
therefore it is possible that a population size is not dividable by (N-1).In such a 
case, the number of individuals is calculated as the smallest integer greater than the 
result of population size divided by (N-1).  
 
2.4. Applications 
2.4.1. The Study Area and Data Availability 

The Fairchild Creek watershed, draining 355 km2at the outlet station (Figure 1), 
is located in the central part of the Grand River Basin in Ontario, Canada. 
Topography of the watershed is relatively flat with 90% of the area having slopes 
less than five degrees. Soils are mainly loams and silt loams. About 64% of the 
area is for agriculture (Figure 1a), followed by forest (21%), pasture (9%), urban 
(5%), and open water (1%). The typical crop rotation in the region is corn, 
soybean, and winter wheat. The study area has a temperate climate with a relative 
cold winter. Based on the climate data collected during 1990-2005, mean annual 
temperature is 8.0°C in the watershed, average annual precipitation is 940 mm, and 
average annual runoff is 277 mm. 
 The collected data for model setup include: 1) 10×10m DEM and virtual 
drainage system; 2) soil data from Ontario Ministry of Agriculture and Food 
(OMAFRA); 3) 30×30m land use generated from Landsat image; 4) daily 
precipitation data of two stations (Cambridge and Brantford), and daily 
temperature data of one station (Brantford) from Meteorological Service of 
Canada; 5) daily flow, and grab sampling TP concentration for the period 1990 to 
1999 from Ontario Ministry of Environment; and 6) Statistical crop management 
information from OMAFRA. These data are used to setup and calibrate the SWAT 
model. 
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Figure 1. Land use (a) and watershed delineation (b) of the Fairchild Creek watershed 

 
2.4.2. SWAT Setup and Calibration 

Using a threshold value of 710ha, the watershed was divided into 31 sub-basins 
with sub-basin areas ranging from 12 to 280 ha (Figure 1b). Based on the land use 
and soil GIS layers, these sub-basins were further divided into HRUs using 
threshold of land use (20%) and soil (10%), which resulted in 157 HRUs in total 
with an average HRU area of 226 ha. Slope was not used for the HRU deviation 
because of the flat landscape in the watershed. The management inputs for crop 
HRUs were setup based on the OMAFRA statistical information with a three-year 
crop rotation, wheat, corn, and soybean. 

The flow calibration and validation were implemented using an auto-calibration 
tool UNCSIM (Reichert, 2006) combined with a manual calibration technique. 
Calibration of the SWAT was performed for the years from 1991 to 1995, 
validation from 1996 to 1999, and the year 1990 was used for model warm-up. The 
simulated monthly and daily flows were compared with the measured data at the 
watershed outlet, and were evaluated statistically using the model bias and the 
Nash-Sutcliffe Criterion (NSC). Because there was no continuous water quality 
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data available at the outlet monitoring station, calibration and validation of TP 
were implemented manually. A comparison of observed and simulated monthly 
flow at the watershed outlet is shown in Figure 2. The long term water balance was 
very well estimated as demonstrated by the model bias where 0.03 is for calibration 
period and -0.05 for validation period. High monthly NSC values, 0.82 and 0.87, 
were obtained for both calibration and validation period. However, the daily flow 
was relatively poorly reproduced with NSC values of 0.56 and 0.54 respectively for 
the calibration and validation period but still in acceptable range. Because the grab 
sampling TP data represented an instantaneous concentration of TP, only manual 
calibration and validation were performed by comparing the simulated TP with 
observed data at the watershed outlet. In general, the simulated TP appeared to 
agree with the measurements. The simulated annual TP yield was 0.6 kg/ha/yr, 
corresponding to 21,300 kg/yr at the watershed outlet under the existing BMP 
condition. 
 

 
 
Figure 2. Observed and simulated average monthly discharge at the watershed outlet 

 
2.4.3. BMPs Characterization and Scenario Design 

Three BMPs, buffer strip, conservation tillage, and fertilizer reduction, are 
evaluated in this study. Table 1 lists the description of these three BMPs and how 
SWAT parameters will be changed. For the buffer strip BMP, if it is selected, a 
value of 3 m is set to the HRU buffer width, otherwise, the buffer width is set to 
zero. For the conservation tillage BMP, if it is selected, the tillage type will be 
changed from conventional tillage to conservation tillage, and the associated 
parameters including tillage depth, mixing efficiency, and operational curve 
number will be changed accordingly. For the fertilizer reduction BMP, if it is not 
selected, the conventional fertilizer application rate is applied which is the baseline 
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scenario for SWAT calibration. If it is selected, the application rate of fertilizer will 
reduced by 1/3 or 1/2 based on the crop type and rotation. 
 
Table 1. Characterization of BMPs in the SWAT model 
 

BMPs Buffer strip Conservation tillage Fertilizer 

Yes Set buffer width to 
3 meters 

Set tillage type to 
conservation tillage 

Reduce 33% fertilizer rate for core, 50% 
for soybean, and 50% for wheat 

No Set buffer width to 
0 meter 

Set tillage type to 
conventional tillage Set fertilizer rate to default values 

 
Four BMP scenarios are evaluated in the ε-NSGA-II optimization with an 

objective of TP reduction: (1) a single BMP of buffer strip, (2) a single BMP of 
conservation tillage, (3) a single BMP of fertilizer reduction, and (4) multiple 
BMPs of the three. The SWAT model for the Fairchild watershed consists of 87 
crop HRUs. Accordingly, one individual in a population is represented by a vector 
of size 1/87, and each individual element represents a setting of the three BMPs 
within a HRU. Scenarios 1 to 3 utilize the same procedure to encode an individual 
element value. The element values are either 0 or 1. 0 represents no BMP 
operation, and 1 represents BMP operations to all crop HRUs. For the 4th BMP 
scenario, three steps are conducted to parse the element value: (1) rounding it to its 
nearest integer, (2) converting this integer to a binary of three digits, and (3) 
interpreting each digit with “Yes/No” BMP setting. For example, if an individual 
element value is 5.3, it is firstly rounded to 5, and then converted to a three digit 
binary ‘101’. The first number, ‘1’, indicates the setting of buffer strip is “Yes”, the 
middle number, ‘0’, represents that no conservation tillage is implemented, and the 
last number, ‘1’, indicates the BMP of fertilizer reduction is implemented in the 
HRU. If all BMPs are implemented, the corresponding three-digit is 
‘111’corresponding to a number of 7 in its decimal form. In the case of no BMP 
operation, the three-digit is ‘000’ corresponding to a number of 0 in its decimal 
form. Thus, the range of the element value is [0, 7], and is the same as individual 
BMP scenarios.  
3. Results and Discussion 

The ε-NSGA-II optimization results for single BMP scenarios of buffer strip, 
conservation tillage, and fertilizer reduction are shown in Figure 3(1), 3(2), and 
3(3) using the TP objective function in Equation (1). Each point in the Pareto front 
represents a non-dominant solution for the expected TP reduction and the BMP 
economic cost, and corresponds to a BMP distribution scenario in the watershed. 
The Pareto line separates the solution space into two parts. The area above the line 
is the feasible solution space, and the area below the line is the non-feasible 
solution space constrained by the TP reduction rate and the BMP economic cost. 
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All three Pareto fronts show that economic cost increases with TP reduction, and 
the buffer strip BMP is more cost-effective than fertilizer reduction and 
conservation tillage. For the BMP scenarios of 100% application in cropland areas, 
buffer strip may reduce TP yield at the watershed outlet by 50.7% from 21,300 to 
10,500 kg/yr with a total cost of $55,500. Conservation tillage may reduce TP yield 
by 26.3% to 15,700 kg/yr with cost of $545,000, and fertilizer reduction may 
reduce TP yield by 34.7% to 13,900 kg/yr with a total cost of $123,000. The 
corresponding cost-benefit ratios for the TP reductions are 5.14, 97.3, and 16.6 
$/kg/yr respectively. If we set a 20% TP reduction objective at the outlet (4,260 
kg/yr), the cost for buffer strip would be $13,000, conservation tillage $343,000, 
and fertilizer reduction $55,000, corresponding cost-benefit ratios of 3.02, 79.8, 
and 12.8 $/kg/yr respectively. This indicates that the cost-benefit ratio decreases 
with the TP reduction objective. The BMPs would be more cost effective for a low 
TP reduction objective, and less cost effective for a high TP reduction objective. 
Once the solution is defined for a given TP reduction objective, the BMP 
distribution can be obtained by locating the croplands on the selected HRUs.   

Figure 3(4) shows the ε-NSGA-II optimization results for the multiple-BMP 
scenario using the TP objective function in Equation (1). The Pareto line gives the 
best solution sets for a given TP reduction rate at the watershed outlet that are 
composed of buffer strip, conservation tillage, and fertilizer reduction BMPs over 
the watershed. Compared to the three individual BMP scenarios, the multiple-BMP 
scenario is more effective. If the three BMPs are applied to all croplands, the TP 
yield at watershed outlet can be reduced by 78.7% from 21,300 to 4,540 kg/yr with 
a total cost of $779,000 corresponding to a cost-benefit ratio of 46.5 $/kg/yr. If a 
20% TP reduction objective is set at the outlet (4,260 kg/yr), the cost for the 
multiple-BMP scenario would be $16,500, corresponding cost-benefit ratio of 3.87 
$/kg/yr. This value is close to the cost-benefit ratio of buffer strip (3.02 $/kg/yr), 
indicating buffer strip is dominant in this multiple BMP scenario and few fertilizer 
reduction and conservation tillage BMPs are selected. Along with the increase of 
the TP reduction, the BMPs of fertilizer reduction and conservation tillage 
gradually join the scheme to achieve a best cost-effective ratio. Once the scenario 
is chosen, the spatial distribution of the three BMPs can be obtained by locating the 
farmlands on selected HRUs.   
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Figure 3. Pareto frontiers between TP load and economic cost for the scenarios of (1) 
buffer strip, (2) conservation tillage, (3) fertilizer reduction, and (4) multiple BMPs of the 
three 

 
The parallel computation can effectively reduce the required computation time 

and increase greatly ε-NSGA-II’s optimization efficiency. Using 30 processors on 
Sharcnetto optimize TP yield at the HRU level, the total CPU time for scenario 1, 
2, 3, and 4 is 61.5, 69.2, 60.1, and 69.9 hours respectively, while the clock time 
(actual parallel computation time) is 3.70, 4.60, 4.90, and 4.10 hours with reduction 
efficiency of 94.0%, 93.3%, 91.8%, and 94.1% respectively. When optimizing at 
sub-basin level using 30 processers, i.e. all crop HRUs are selected within the sub-
basin if the sub-basin is selected, the total CPU time is 27.8, 40.0, 21.8, and 27.5 
hours for the four scenarios, while the clock time is 1.80, 1.80, 1.60, and 1.60 hours 
with reduction efficiency of 93.5%, 95.5%, 92.7%, and 94.2% respectively. These 
performances are dependent on the number of processers, the number of HRUs, the 
length of simulation period, and the TP reduction objectives. If the numbers are 
different, the parallel computation efficiency may differ considerably from the 
above values. 

Although acceptable results are obtained from this study, the optimization 
results, e.g. the cost-benefit ratio of each BMP scenario, may suffer significant 
uncertainties. These are mainly due to the data limitation and assumptions we made 
in the model setup, BMP characterization, model parameterization, BMP economic 
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cost, and ε-NSGA-II operation. Therefore, the Pareto lines presented in Figure 3 
may not reflect exactly the actual cost-effectiveness of the four BMP application 
schemes, but a demonstration of the developed parallel computing based multi-
objective optimization algorithm in this study. Additional studies are required to 
improve the SWAT model and the BMP characterization especially the estimate of 
BMP cost and its variation over the watershed in order to achieve more reliable 
optimization results. 
 
4. Conclusions 

In this study, we developed a parallel computing based multi-objective 
optimization algorithm for spatial targeting of agricultural BMPs over a watershed 
in order to achieve cost-effective solutions. The algorithm consists of ε-NSGA-II, 
the SWAT model, and the parallel computation technique, and was tested in the 
Fairchild Creek watershed in southern Ontario of Canada. The evaluated BMPs 
scenarios include three individual BMPs of buffer strip, conservation tillage, and 
fertilizer reduction, and one multiple BMP scenario. The parallel computation 
allows the run of multiple SWAT models simultaneously and can reduce the ε-
NSGA-II optimization time significantly. 
 The case study in the Fairchild Creek watershed shows that the buffer strip is 
the most cost-effective BMP in reducing TP at the watershed outlet followed by 
fertilizer reduction and conservation tillage. For each of the BMP scenarios, the 
cost-benefit ratio decreases along with the increase of TP reduction at the 
watershed outlet, indicating the BMPs are more cost-effective when covering a 
small area and less cost-effective when covering a large area. The Pareto-optimal 
fronts generated between the two optimized objective functions can be used to 
achieve desired water quality goals with minimum BMP implementation cost. To 
reduces the optimization result uncertainties, further studies are required to 
improve the SWAT model setup, parameterization, BMP characterization, and ε-
NSGA-II operation.  
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