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Soil organic matter (SOM) is one of the important soil parameters which 

directly and indirectly affects several soil physicochemical properties and 

environmental factors. The aim of this research was to predict soil organic 

matter (SOM) using kriging and cokriging methods using soil auxiliary 

data. Soil samples were gathered from an area of 63 km2 in Bonab Plain, 

northwest Iran. An overall 78 samples were collected from depth 0-20 cm. 
SOM and ten other soil physicochemical properties such as electrical 

conductivity (EC), soil texture, calcium and carbonate equivalent (CCE) 

were measured. Later, correlation between SOM and soil properties was 

determined and those properties with high correlation in 1% probability 

level with SOM were used to develop cross-semivariograms. Then, SOM 

prediction was conducted on a grid of 100 m with kriging and cokriging 

methods using BMElib package developed for MATLAB software. 

Results showed that among the studied soil properties, CCE, silt, sand and 

wet aggregate stability (WAS) had the highest correlations with SOM and 

therefore they were chosen as auxiliary data in cokriging of SOM. Spatial 

prediction of SOM with kriging method resulted in MSE and RMSE of 

0.055 % and 0.234% respectively. However, SOM prediction with 
developed cross-semivarigrams using auxiliary data revealed that CCE 

and silt could improve SOM prediction with MSE and RMSE of 0.047%, 

0.032% and 0.216%, 0.178 % respectively. The better performance of 

CCE and silt covariates in SOM prediction could be explained by their 

higher correlation with SOM and decreased nugget effect in developed 

cross-semivariograms (increased spatial dependency). As a conclusion, 

due to the nature of SOM which is controlled by some of the soil 

properties; especially soil texture, CCE, aeration condition in soils, ets., 

selecting appropriate soil parameters with high correlation with SOM and 

high spatial dependency can improve spatial prediction of SOM. This 

facilitates taking a step forward in sustainable management of SOM as a 
key soil quality index, especially in areas with salinization and 

desertification danger. 
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Introduction 
Soil organic matter (SOM) is one of the 
main components of the soil quality and 
productivity (Herrick and Wander, 1997). 
SOM in the soil increases soil aggregation 
that improves water holding capacity and 
infiltration. It also improves maintenance of 
nutrients and soil resilience to environmental 
degradation (Sullivan et al., 2005; Parras-
Alcantara et al., 2016). On the other hand, in 
arid and semi-arid regions where lack of 
water is a crucial problem, soil particles can 
easily be moved by wind due to the absence 
of SOM (Bruun et al., 2015; Saia et al., 
2014). Dust phenomenon has become a 
serious problem in most parts of the world as 
a consequence of climate change, resulting 
in increased soil salinity and decreased soil 
productivity and quality. It is also hazardous 
to human health both in the areas of origin 
and also other areas due to the long-range 
transport of the soil particles (Middleton, 
2017). SOM also plays an important role in 
global carbon cycle and controlling the 
emission of greenhouse gasses (Lal, 2004; 
Heimann and Reichstein, 2008; Marchant et 
al., 2015; Bradford et al., 2016; Filippi et al., 
2016).  

Bonab Plain, located at the southeastern 
part of Urmia Lake in the northwest Iran, is 
one of the important agricultural plains in 
the region. During the past decades, this 
region has experienced several 
environmental degradations, such as 
secondary salinization of lands as a 
consequence of drying of saline Urmia Lake. 
The conventional agricultural practices 
along with cultivation of onion and potato as 
the prevailing cropping products, affected 
SOM in soils through exposing it to severe 
decomposition. Low SOM content of soils in 
the region not only has increased the need 
for chemical fertilizers but also heightened 
the risk of environmental pollution. 
Therefore, due to the limited area of suitable 
lands for food production in Iran, 
understanding of SOM content and its 
spatial mapping is important from 
agricultural and environmental perspectives 
(van Wesemael et al., 2011; Dono et al., 
2016; Novara et al., 2017). 

 Statistical approaches such as 
interpolation methods are one of the 
common ways in spatial estimation of SOM. 

Kriging as the best unbiased predictor has 
been used in SOM prediction worldwide 
(Chabala et al., 2017; Ye et al., 2017; 
Elbasiouny et al., 2014). Such methods have 
shown their best performance where dense 
SOC measurements are taken (Hoffmann et 
al., 2014; Piccini et al., 2014).  

However, SOM field sampling and 
laboratory measurements are expensive and 
time consuming (Miklos et al., 2010; Mulder 
et al., 2011). On the other hand, SOM shows 
high degrees of variability due to its inherent 
changes with regard to the other soil forming 
factors and processes and disregard of their 
effects on soil SOM will reduce the accuracy 
of the SOM predictions. In other words, 
more than any other soil characteristic, SOM 
is influenced by environmental factors such 
as soil physicochemical properties. The rate 
and effect of these properties on the SOM is 
different, hence the importance of each one 
should be examined separately (Allen et al., 
2010; Jandl et al., 2013; Viaud et al., 2010). 
Therefore, conventional kriging methods has 
been upgraded to be more efficient by taking 
into account several covariates (Wang et al., 
2017; Zaouche and Vaudour, 2017; Mirzaee 
et al., 2016; Zeng et al., 2016; Qi-yong et al., 
2014; Dai et al., 2014; Zhang et al., 2012; 
Kumar et al., 2012). Cokriging which is a 
multivariate variant of ordinary kriging have 
been proven to be superior over other 
geostatistical methods in spatial prediction 
of soil properties e.g. CEC (Liao et al., 
2011); soil copper (Su et al., 2009); and soil 
total nitrogen (Wang et al., 2013). It has also 
been successfully used in spatial prediction 
of SOM (Singh et al., 2016; Wu et al., 
2009).  The aim of present research was to 
investigate the spatial variation of SOM in 
southeast Urmia Lake in Bonab Plain with 
soil auxiliary data as covariates.  
 

Material and Methods 
Study area 
The study area includes 63 km

2
 of lands in 

Bonab Plain, southeast Urmia Lake, 
northwest Iran (Figure 1). It is located 
between 45

o
 58

’
 41’’ to 46

o
 02

,
 35’’ Eastern 

longitudes and 37
o
 20

’
 21’’ to 37

o
 16’ 18’’ 

Northern latitudes with average annual 
precipitation and temperature of 264.73 mm 
and 13.4

◦c
 respectively. Potential evaporation 

in the area is between 900-1170 mm. 
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Figure 1. The study area in the southestern part of Uromieh Lake in Bonab Plain. 

 

Data description 

A number of 78 soil samples were gathered 
on a 500-meter grid from 0-20 cm depth 

during autumn 2018. At each sampling 

point, 10 separate soil samples within 1 m 

radius were taken and mixed to obtain a 
homogeneous soil sample. As soil organic 

matter (SOM) shows significant 

correlations with other soil properties such 
as soil texture (Jegajeevagan et al., 2013; 

Forth, 1991; Zaouche et al., 2017) these 

auxiliary data can be used as covariates in 

SOM prediction. Therefore, after passing 
soil samples through 2 mm sieve, soil 

electrical conductivity (EC), pH, Na
+
 and 

Ca
2+

+Mg
2+ 

were determined in saturated 
paste extracts of soil samples (Rhoades, 

1982). Calcium carbonate equivalent (CCE) 

was measured using back titration of the 
remaining HCl (Page et al., 1992). Soil 

texture was measured using a hydrometer 

method (Bouyoucos, 1962). Soil organic 

matter (OM) was measured with acid 
digestion (Page et al., 1982). Wet aggregate 

stability (WAS) was determined using wet 

sieving (John and Kim, 2002). Sodium 
adsorption ratio (SAR) was determined 

using Equation 1 (Taxonomy, 2014). 

𝑆𝐴𝑅 =
𝑠𝑜𝑢𝑙𝑎𝑏𝑙𝑒 𝑁𝑎 (𝑚𝑚𝑜𝑙(+).𝑙−)

√
(𝑠𝑜𝑢𝑙𝑎𝑏𝑙𝑒 (𝐶𝑎+𝑀𝑔)(𝑚𝑚𝑜𝑙(+).𝑙−))

2

           (1) 

Then spatial dependency of the soil SOM 

were checked and based on developed 
variogram with SOM data, spatial 

prediction of SOM were implemented on a 

grid of 500 m using ordinary kriging. Then 

to see if other measured soil properties as 
covariates, could improve the SOM 

prediction; measured soil properties were 

used to improve the variogram of SOM. 
Afterwards, once more spatial prediction of 

soil SOM was conducted using cokriging 

method and finally the performance of the 

different methods was compared.  

 

Cross-semivariance functions 

In order to have better idea about how 
auxiliary data can improve predictions 

quality, first one needs to know how 

kriging and cokriging methods work. 
Kriging estimators’ basic equation is 

defined as follows (Li and Heap, 2008): 

 

𝑍(𝑥0) − 𝜇 = ∑ 𝜆𝑖[𝑍(𝑥𝑖) − 𝜇(𝑥0)𝑛
𝑖=1 ]      (2) 

Equation 2 can be extended to incorporate 
the additional information as follows: 

�̂�1(𝑥0) − 𝜇1 = ∑ 𝜆𝑖
𝑛1
𝑖1=1 [𝑍1(𝑥𝑖1

) −

𝜇1(𝑥𝑖1
)] + ∑ ∑ 𝜆𝑖𝑗

𝑛𝑗

𝑖𝑗=1
[𝑍𝑗 (𝑥𝑖𝑗

) −
𝑛𝑣
𝑗=2

𝜇𝑗 (𝑥𝑖𝑗
)]                                                   (3) 

Where 𝜇1 is stationary mean of the initial 

variable, 𝑍1(𝑥𝑖1
) is the data at point 𝑖1, 
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𝜇1(𝑥𝑖1
) is the average of samples within the 

search window, 𝑛1 is the number of sample 

points within the search window for point 

𝑥0 used to make the esmination, (𝜆𝑖1
) is the 

weight selected to reduce estimation 

variance of the initial variable, 𝑛𝑣 is the 

number of secondary variables, 𝑛𝑗  is the 

number of 𝑗𝑡ℎ secondary variable within the 

search window, 𝜆𝑖𝑗
 is the weight assigned 

to 𝑖𝑗
𝑡ℎ point of 𝑗𝑡ℎ secondary variable, 

𝑍𝑗(𝑥𝑖𝑗
) is the data at 𝑖𝑗

𝑡ℎ   point of 𝑗𝑡ℎ 

secondary variable, and 𝜇𝑗(𝑥𝑖𝑗
) is the mean 

of samples of  𝑗𝑡ℎ secondary variable within 

the search window. 

The estimation of cross-semivariance can 

be done using the following equation: 

𝛾12(ℎ) =
1

2𝑛
∑[𝑧1(𝑥𝑖) − 𝑧1(𝑥𝑖)

𝑛

𝑖=1

− 𝑧1(𝑥𝑖 + ℎ)][𝑧2(𝑥𝑖)
− 𝑧2(𝑥𝑖 + ℎ)] 

                                    (4) 

In the present research, Z1 refers to the 

SOM and Z2 refers to the soil covariates. 

 

Validation and comparison criteria 

The following global performance 

criteria were computed to compare the 
kriging and cokriging methods: mean error 

(ME), mean squared error (MSE), and root 

mean square error (RMSE). Superior 

predictions exhibit a ME value close to 
zero, as well as small MSE and RMSE 

values. The BMElib toolbox (Christakos, 

2002), implemented in Matlab 
(MathWorks, 1999), was employed for all 

analyses. 

 

Results and Discussion 

Soil Chemical Properties 

A summary of the statistical analysis for the 

measured soil properties in the collected 
soil samples is presented in Table 1. In 

Figure 2, color plots of the soil chemical 

properties and their corresponding 
coordinates are depicted. Based on these 

results, the mean soil electrical conductivity 

(EC) was 10.94 dS.m^-1, with a minimum 
value of 0.33 dS.m^-1 and a maximum of 

107.5 dS.m^-1. The lowest EC values were 

observed in the agricultural lands, while the 

highest values were found in the Urmia 

Lake playa sediments. Due to the diverse 

nature of the study area, consisting of two 
distinct landforms (alluvial plain and 

playa), sharp variations in some other soil 

properties such as sodium (Na), calcium 

plus magnesium (Ca+Mg), and sodium 
adsorption ratio (SAR) were also observed 

(Table 1 and Figure 2). Previous studies 

have highlighted the presence of a distinct 
boundary between saline and non-saline 

lands in the study area (Hamzehpour and 

Rahmati, 2016). However, soil organic 

matter (OM) did not exhibit significant 
variations throughout the study area, even 

though the areas located on the alluvial 

plain (Bonab Plain) were under intensive 
cultivation, while lands on Urmia Lake 

playa sediments were either covered with 

native vegetation or were barren due to high 
soil salinity (Table 1 and Figure 2e). The 

relatively low levels of SOM in the study 

area (mean SOM was 0.6%) can be 

attributed to the saline nature of Urmia 
Lake playa sediments and unsustainable 

land management practices, leading to the 

accelerated decomposition of SOM. 
According to Table 1, the mean calcium 

carbonate equivalent (CCE) in the studied 

soil samples was 18.57%, indicating that 
the soils in the study area were 

predominantly calcareous, with neutral to 

alkaline pH values (Table 1 and Figure 2g). 

 

Soil physical properties 

Summary statistics for some of the soil 

physical properties are presented in Table 1 
and Figure 3. According to Table 1, there 

were significant variations in soil texture 

fractions among the soil samples. The sand 

content of the studied soil samples ranged 
from 14% to 90%, with a mean value of 

61.54%. In Figure 3a, the color plot 

displays the sand content of the soil 
samples along with their respective 

coordinates. Interestingly, the highest sand 

content was observed in the Bonab Plain, 
where it was expected to have finer textured 

sediments based on geomorphological 

considerations. The high sand content in 

this area can be attributed to the common 
cultivation of crops such as onions and 

potatoes, which are predominant 
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agricultural productions in the region. Sand 

is often added to these soils to improve soil 

texture, enhance soil aeration, and facilitate 
water movement. This practice is also 

responsible for the very low levels of soil 

organic matter (SOM) observed in soil 

samples from agricultural lands. In coarse-
textured soils, SOM is less protected by 

mineral particles due to their larger size and 

lower specific surface area (Kennedy et al., 

1992). Consequently, coarse-textured soils 

tend to lose a significant amount of SOM 

through microbial respiration, resulting in a 
negative correlation between soil sand 

fraction and soil organic carbon (SOC) 

content, making it challenging to improve 

SOC levels in sandy soils (Magdoff and 
Weil, 2004; Adhikari and Hartemink, 

2017). 

 
Table 1. Summary of statistical analysis of measured soil properties used as auxiliary data in soil organic 

matter spatial prediction. 

Soil property Unit  Mean   SD Max Min Skewness Kurtosis 
EC (dS.m-1)  10.95   20.48 107.5 0.33 2.94 9.01 

pH -  8.16   0.44 8.97 7.10 -0.5 -0.24 

Na (meq.l-1)  29.58   67.60 436.92 0.92 4.04 18.32 

Ca+Mg)) (meq.l-1)  24.58   16.19 108.00 4.00 11.28 2.88 

SAR -  4.92   8.82 48.25 0.23 16.02 3.67 

OM )%(  0.6   0.32 1.92 0 1.09 2.56 

CCE )%(  18.57   3.91 30.58 12.64 0.72 0.95 

Sand )%(  61.55   18.19 90.00 14.00 2.41 1.39 

Silt )%(  26.70   13.03 56.00 6.00 -0.65 0.39 

Clay )%(  11.75   7.12 36.00 2.00 -0.34 -0.66 

WAS )%(  16.41   20.26 87.11 0.00 3.24 1.83 

OM: organic matter; EC: electrical conductivity; SAR: sodium adsorption ratio; CCE: calcium carbonate 

equivalent; WAS: wet aggregate stability 
 

 
 

Figure 2. Plots for the sampling campaign. The level of color reflects values of measured soil property. 

a: electrical conductivity (EC) (dS.m-); b: log of Na (meq.l-); c: log of (Ca+Mg) (meq.l-); d: pH; e: soil 

organic carbon (%); f: log of SAR; g: calcium carbonate equivalent (CCE) (%).  
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In comparison to the sand and silt 

contents of the studied soil samples, the 

clay content was generally low, except for a 
few locations situated on the Urmia Lake 

playa sediments (Figure 3c). Studies have 

shown a positive correlation between SOM 

content and soil clay content (Forth, 1991). 
One of the primary reasons is the high 

water-holding capacity and cation exchange 

capacity (CEC) of clay particles, which 
promote improved vegetation cover. 

Conversely, in soils with high clay content, 

the intensity of soil organic matter 

decomposition decreases due to limited 
aeration (Minasny et al., 2013). In  

fine-textured soils, SOM is effectively 

shielded by mineral particles, protecting it 
from microbial degradation. 

 

As SOM plays a crucial role in 

increasing the size and stability of soil 

aggregates, it was expected that the wet 
aggregate stability (WAS) values would be 

low. In Figure 3d, the color plot illustrates 

the distribution of WAS in the study area. 

Overall, except for a few locations, WAS 
values in the study area were low, with a 

mean value of 16.41%. Since WAS is a key 

factor in soil resistance to water erosion 
(Cañasveras et al., 2010), these low values 

could increase the risk of flooding and 

water erosion in the study area. Several 

studies have emphasized the role of SOM 
and clay content in enhancing WAS in soils 

(e.g., Cañasveras et al., 2010; Cantón et al., 

2009; Amezketa, 1999). Therefore, the 
observed low WAS values can be explained 

by the low levels of both SOM and clay in 

the study area. 
 

 
Figure 3. Plots for the sampling campaign. The level of color reflects values of measured soil property. a: 

sand (%) (dS.m-); b: silt (%); c: clay (%); d: wet aggregate stability (%). 

 

SOM prediction with ordinary kriging 

The results for the fitted semi-variogram on 
the SOM (Soil Organic Matter) dataset and 

its corresponding parameters are presented 

in Figure 4a and Table 2. The semi-
variogram model with the smallest sum of 

squared residuals was selected as the best 

fitting model (Table 2). A SOM prediction 

map, generated using the ordinary kriging 
method along with cross-validation points, 

is also displayed in Figure 4b. The obtained 

variogram model exhibited a nugget effect 
of 0.049, a spherical component with a sill 

of 0.107, and a range of 2.4 km. The 

nugget-to-sill ratio (NE) was employed to 
describe the level of spatial dependence and 

random variation in SOM content. An NE 

value less than 25% indicates strong spatial 

dependence, while NE values between 25% 
and 75% signify moderate spatial 
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dependence, and NE values exceeding 75% 

indicate weak spatial dependence. 

Validation results demonstrated that the 
spatial prediction of SOM using the kriging 

method yielded acceptable performance, 

with a mean squared error (MSE) of 

0.055% and a root mean square error 
(RMSE) of 0.234% (Table 5). Comparable 

studies by Song et al. (2017) and Zhang et 

al. (2012) reported RMSE values of 2.071 
g.kg-1 (0.207%) and 1.87 g.kg-1 (0.187%) 

for the spatial prediction of SOM using the 

ordinary kriging method in China. 

However, the nugget-to-sill ratio of 0.45 

(indicating moderate spatial dependency) 
suggests that, despite the expectation of 

fitted semi-variogram values at each 

sampling point to be zero or close to zero, 

there were unaccounted sources of error in 
the semi-variogram modeling process. This 

reduced the validity of the fitted semi-

variogram for understanding spatial 
variations and predictions of SOM.

 

 
Figure 4: a) Spatial semi-variogram function for soil organic matter during autumn 2018. Dots 

correspond to the calculated values; solid line is the corresponding fitted model. b) Spatial prediction of 

soil organic matter with validation points in Bonab Plain using fitted semi-variogram function. 

 
Table 2. Fitted semi-variogram parameters on SOM dataset. 

Model Nugget effect sill Nugget/sill Effective range R 

exponential 0.049 0.107 0.457 2460 0.914 

 

Covariance and Cross-semivariance 

functions 
Selecting appropriate auxiliary variables is 

crucial in obtaining better understanding of 

SOM variations. In order to use a soil 
property as covariate in spatial prediction of 

SOM, first, covariate should have 

significant correlation with SOM. To 

investigate the role of the studied soil 
properties in improving spatial prediction of 

SOM, Pearson correlation coefficient was 

determined between SOM and soil 

properties and results are presented in Table 

3. As shown in Table 3, SOM had 
significant correlation with soil CCE, 

WAS, silt and sand in 1% probability level. 

Among these, the highest p-value was seen 
for CCE and the lowest was observed for 

WAS. Therefore, these four soil parameters 

were selected as covariates in spatial 

prediction of SOM. In Figure 5 plots of the 
correlation between selected covariates and 

SOM and fitted linear models are also 

presented.   

 
Table 3. The correlation between soil organic matter and some of the studied soil properties. 

EC pH Na(eq) Ca+Mg(eq) SAR CCE WAS Clay Silt Sand 

0.027 -0.058 0.04 0.18 -0.03 **0.55 **0.33 *0.27 **0.44 **042- 
SOM: soil organic matter; CC: Correlation coefficient 
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Figure 5. Plots of the correlations between SOM and selected soil properties as covariates. a:  calcium 

carbonate equivalent (CCE); b: silt; c: sand; d: wet aggregate stability (WAS). 
 

 Subsequently, cross – semi - variance 

functions were computed between SOM 
(Soil Organic Matter) and the four chosen 

covariates, as illustrated in Figure 6. The 

best-fitting model and its corresponding 

parameters were extracted and are 
presented in Table 4. The results indicated 

that the calculated cross-semi-variance 

functions significantly improved the 
nugget-to-sill ratio for all selected 

covariates. However, it's worth noting that 

the range reduced, leading to a shorter 
applicable distance for the developed cross-

semi-variograms (with the exception of 

WAS, which followed the nature of the 

fitted linear model). Among 

these results, the cross-semi-variograms for 

silt and sand exhibited the lowest nugget-
to-sill values, while the highest R values 

were associated with silt and CCE, with 

values of 0.89 and 0.86, respectively. 

 Figure 7 displays spatial prediction 
maps of SOM (Soil Organic Matter) with 

various covariates. Overlaid onto these 

predicted maps are cross-validation points, 
and the similarity in color between the 

points and the background maps reflects the 

accuracy of the predictions. As depicted in 
the figure, predictions of SOM with CCE 

and silt as covariates yielded superior 

results compared to the use of sand and 

WAS as covariates. 
 

Table 4. Fitted best cross-semivariograms and model parameters for SOM prediction using soil 

covariates. 

 Model Nugget effect sill Nugget/sill Effective range R 

CCE spherical 0.27 0.612 0.44 1811 0.864 

Silt spherical 0.001 2.140 0.00 975 0.896 

sand spherical -0.001 -2.811 0.00 1507 0.822 

WAS linear 0.754 3.127 0.24 7000 0.736 
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Figure 6. Cross-semivariance functions for SOM spatial prediction with different covariates. a: CCE; b: 

silt; c: sand; d: WAS. 

 
Table 5 provides cross-validation results for 

SOM prediction using the kriging method, 

cokriging with different covariates, and 

relevant comparison criteria. According to 
the table, among the four soil properties 

under study, the prediction of SOM with silt 

as a covariate demonstrated better 
performance, with a Mean Squared Error 

(MSE) and Root Mean Squared Error 

(RMSE) of 0.032% and 0.178%, 

respectively. This approach also 

outperformed ordinary kriging. Additionally, 
cokriging SOM with CCE as a covariate 

yielded more accurate predictions than 

ordinary kriging (Table 5). 

 

 
Figure 7. Spatial prediction of SOM with covariates. Dots show the cross-validation points. The 

level of color reflects the SOM %. a: CCE; b: silt; c: sand; d: WAS. 
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Table 5. Cross-validation criteria to compare SOM prediction with ordinary kriging and co-kriging 

methods with different covariates.  

 OM CCE Silt Sand WAS 

kriging Co-kriging 

ME (%) 0.015 0.012 0.002 0.023 0.017 

MSE (%) 0.055 0.047 0.032 0.11 0.138 

RMSE (%) 0.234 0.216 0.178 0.331 0.371 

 
Several studies have explored the 
effectiveness of co-kriging compared to 
ordinary kriging (Stein and Coresten, 1991; 
Zhang et al., 1997; Wu et al., 2003). Co-
kriging offers an advantage by allowing the 
incorporation of additional covariates in soil 
variable predictions. However, it's important 
to note that co-kriging may not necessarily 
outperform kriging when auxiliary data are 
poorly correlated with the target variable 
(Martínez, 1996; Triantafilis et al., 2001). 
This underscores the significance of 
selecting appropriate auxiliary variables. For 
instance, Yates and Warrick (1987) found 
that co-kriging tends to perform better than 
kriging when the correlation between 
auxiliary data and the target variable exceeds 
0.5. 
 Therefore, the relatively lower 
performance in predicting sand and WAS 
content can be attributed to their weak 
correlations with SOM (0.33 and -0.42, 
respectively). In contrast, even though silt 
exhibited a lower correlation with SOM 
compared to CCE, its stronger spatial 
dependence outweighed the lower 
correlation coefficient, resulting in more 
accurate SOM predictions. Overall, 
research has consistently highlighted the 
importance of soil texture as a covariate in 
the spatial prediction of SOM. 
 Stevens et al. (2015) demonstrated that 
soil texture plays a primary role in 
controlling SOM at the regional scale, 
accounting for 65.7% of the total SOM 
variance in their study. Additionally, Zhang 
et al. (2012) suggested that the spatial 
distribution of SOM is predominantly 
influenced by terrain indices, soil texture, 
and soil genetic types. 

 
Conclusion 
Spatial estimation of the soil organic matter 
(SOM) is required to map and monitor soil 
quality in order to better manage soils 
especially in areas where soil SOM stocks 

are limited due to lack or low quality of 
irrigation water and miss management of 
agricultural lands. In the present research, 
SOM was studied in one of the major 
agricultural production plains in the 
northeast of Iran. This region is primarily 
and secondarily affected by consequences 
of hyper-saline Lake Urmia dry up. SOM 
content of the investigated soil samples was 
low with a mean value of 0.6 %. High 
decomposition of SOM in the soils as a 
result of the yearly addition of huge 
amounts of sand to the top soil in the region 
was one of the major reasons for observing 
low SOM content in this area. As a step 
forward in sustainable management of 
SOM in the region, the knowledge about 
spatial distribution of SOM and major soil 
properties affecting its content, are highly 
critical. Therefore 78 soil samples were 
gathered and along with SOM, ten other 
soil properties were measured. SOM 
showed high correlations with soil silt, 
sand, calcium carbonate equivalent (CCE) 
and wet aggregate stability (WAS). Among 
these, soil sand content showed negative 
correlation with SOM emphasizing on the 
destructive effects of increase in soil sand 
on accelerated decomposition of SOM. 
Cokriging of SOM with selected soil 
properties as auxiliary data and comparison 
of the results with those of ordinary kriging 
revealed that cokriging with soil silt and 
CCE content led to a lower MSE and 
RMSE values and therefore more precise 
maps of SOM, through improving SOM 
spatial dependency and reducing nugget 
effect. Understanding of the major factors 
affecting SOM as one of the most important 
soil quality parameters in this region and 
production of continuous maps of SOM 
with high accuracy would help in better 
management of agricultural lands, 
sustainability of agricultural productions 
and conserving lands from more 
degradation in the future of the area. 
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