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Sustainable land-use planning refers to the effort to establish a 

balance between economic growth, ecological structures, 

environmental protection, and social progress. Therefore, land-use 

suitability assessment and inclusion of land use compression are 
essential in this context. In recent years, the use of artificial 

intelligence (AI) tools significantly increased for land-use planning. 

In this study, the Multi-Objective Land Allocation (MOLA) 
algorithm, Gravitational Search Algorithm (GSA), and Image 

Processing (IP) technique have been applied to urban land use 

allocation of the Birjand watershed based on a comprehensive set of 

sustainable development goals. The objectives used include 
maximizing fitness functions (e.g., environmental and ecological 

suitability, compression functions, and landscape stability), 

minimizing land-use conversion, imposing limitations on flood-prone 
areas as protected sites with above 70% slope, the demand for urban 

areas, and consideration of only one land use per pixel. Visual 

assessment, statistical and landscape metrics analyses were employed 
to compare results from the selected algorithms. Results showed that 

MOLA (with an average suitability of around 215) had better 

allocation concerning land use suitability assessment for urban 

development. Also, MOLA and IP algorithms (with standard 
deviations of 41.037 and 41.729, respectively) were better than GSA. 

Additionally, based on landscape metrics analysis the studied 

algorithms behaved differently in terms of efficiency and superiority.  
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Introduction 

Land use planning and related changes 
influence the interaction between human 

activities and natural systems. On the other 

hand, optimizing land use allocation to 

provide ecosystem services and sustainable 
development is currently one of the 

influential challenges in urban management 

(Hasegawa et al., 2017). In general, issues 
related to land use allocation involve a set of 

spatial optimization models and the efficient 

distribution of suitable places to meet 

demands while maintaining physical, 
environmental, economic, and social 
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constraints (García et al., 2017). Therefore, 

spatial optimization can be effectively used 

as a principled tool for land use spatial 
planning problems. It can be considered as 

the science of achieving optimal spatial 

arrangements, typically involving the 

identification of the best locations for 
activities and resources based on goals and 

limiting conditions (Yao et al., 2018). Spatial 

optimization in urban planning is grounded 
on the assumption that it encompasses 

multifaceted activities influencing land-use 

patterns through strategic spatial planning, 

land use planning, project planning, and 
others (Hersperger et al., 2018). Thus, spatial 

optimization is both complex and crucial. 

Optimization methods, in general, 
encompass powerful search techniques to 

attain optimal solutions within search spaces 

and among selected solutions (Nguyen et al., 
2014). 

 Malczewski (2004) categorized land-use 

suitability analysis methods into three main 

groups: (a) computer-assisted mapping, (b) 
multi-criteria evaluation methods, and (c) 

artificial intelligence (soft computing-based 

procedures or geo-computation). 
 Civco (1993) pointed out that spatial data 

analysis in all methods, before the use of 

artificial intelligence, faced numerous 
problems such as inadequate accuracy, 

multiple-item measurement scales, 

interdependence of factors, improper 

standardization, unverifiable hypotheses, 
ambiguous inputs, independence 

assumptions, carelessness, inaccuracy, and 

linear relationships. In contrast, 
environmental issues often involve multiple 

goals that may not be linear or simple and 

can be contradictory and inconsistent with 

each other. 
 Classical methods are unable to provide 

logical solutions in this regard. Therefore, 

the third method (utilizing the capabilities 
of artificial intelligence) was proposed to 

optimize environmental issues and 

overcome problems in land-use suitability 
analysis (Wu & Silva, 2010). The latest 

evidence of working with AI indicates the 

implementation of advanced technologies 

and computational methods in land-use 
suitability analysis. Unlike conventional 

methods, these approaches share resistance 

to inaccuracy, ambiguity, and uncertainty, 

enabling them to provide accurate results 

quickly, covering all objectives. In essence, 
artificial intelligence algorithms represent 

another means of addressing complex 

decision problems that are extensive and 

challenging to comprehend. In situations 
involving spatial aspects, large research 

areas, multiple constraints, and ambiguous 

objectives, traditional methods fall short, 
while these algorithms prove cost-effective 

in terms of both time and resources 

(Meiring & Myburgh, 2015). 

 These emerging areas encompass 
evolutionary computation, genetic 

algorithms, evolution strategy, genetic 

programming (Lim et al., 2017), intelligent 
heuristic search for GIS databases 

(Openshaw, 1994), and new special-

interaction models (Diplock & Openshaw, 
1996). Some of these algorithms have been 

specifically employed to address land-use 

allocation problems. For instance, genetic 

algorithms, simulated annealing, ant colony 
optimization algorithms, and particle swarm 

optimization algorithms were respectively 

inspired by evolution / genetics, 
thermodynamic observations, the behavior 

of ants in finding the shortest path between 

home and food, and the social behavior of 
birds and fish (Liu et al., 2015; Chen et al., 

2018; Wang et al., 2019; Zhu et al., 2021). 

 Today, innovative algorithms represent a 

new set of AI methods developed by 
Eastman et al. (1993). Innovative 

programming holds the potential to provide 

a robust and reliable technology for solving 
nonlinear land-use optimization problems. 

It has been suggested that innovative 

algorithms play a crucial role in addressing 

large decision-making problems related to 
land allocation. However, these algorithms 

do not guarantee an optimal solution but 

often offer a near-ideal solution. In this 
context, Cromle & Hanink (1999) reported 

that innovative algorithms can be helpful 

when providing near-optimal solutions. 
Therefore, artificial intelligence techniques, 

such as heuristic and meta-heuristic 

algorithms, can be considered as solutions 

to these challenges (Aerts, 2002). 
 Meta-heuristic methods encompass 

algorithms adapted from the physical and 
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biological processes of nature, often 

operating based on population 

characteristics. Unlike classical methods, 
heuristic algorithms randomly explore the 

search space using a parallel processing 

approach. These methods rely solely on the 

fitness function to guide the search. 
Heuristic search methods involve iterative 

algorithms that apply different operators to 

various members of a population at each 
iteration. These operators are designed to 

foster self-adaptation, cooperation, and 

competition among population members 

(Sarker et al., 2002). Consequently, the 
population undergoes three targeted steps in 

each iteration, including adaptation to the 

environment, cooperation, and information 
exchange, and competition for survival 

using operators applied in these algorithms. 

In contrast, heuristic algorithms incorporate 
specialized techniques for executing each 

step, ultimately leading the population to 

the optimal solution (Rashedi et al., 2009). 

The Gravitational Search Algorithm (GSA) 
is one of the novel meta-heuristic 

algorithms. 

 The Multi-Criteria Decision Making 
(MCDM) method can also be employed to 

address issues related to land-use 

assessment and multi-objective land-use 
allocation, serving as a decision support 

tool in land-use suitability assessment 

(Zamarrón-Mieza et al., 2017). One of the 

multi-criteria decision-making methods 
capable of addressing the evaluation and 

allocation of multiple land-use objectives is 

the Multi-Objective Land Allocation 
(MOLA) method. However, MOLA 

primarily focuses on land suitability for 

land-use allocation and does not pay 

significant attention to the appearance and 
structure of land-use patches. MOLA is 

generally considered a selective heuristic 

approach based on proximity to the ideal 
point for resolving conflicts associated with 

incompatible land uses (Lahiji et al., 2020). 

This method is preferable when only the 
desirability of land-use assignments is 

considered. Nevertheless, it may not fully 

meet all requirements when other criteria, 

such as the spatial structure of land uses in 
the landscape, are taken into account 

(Kamyab et al., 2016). 

 Furthermore, image processing (IP) 

algorithms represent a novel approach to 
image optimization that can be integrated 

with GIS to facilitate land-use modeling 

(Rawat & Kumar, 2015). GIS can be paired 

with these algorithms through data 
exchange for spatial data processing and 

visualization. Additionally, some GIS 

functions can be utilized in the 
development of these intelligent algorithms 

(Liu et al., 2015). Consequently, as land-

use planning involves allocating various 

land-use activities to specific spatial 
divisions, a GIS-based spatial optimization 

approach and mathematical models can 

increasingly support the evaluation of these 
activities (Ligmann-Zielinska, 2017). 

 The present study aimed to harness the 

capabilities of artificial intelligence in 
optimizing issues related to land-use 

suitability assessment in conjunction with 

GIS. Specifically, this study sought to 

develop various algorithms for solving 
multi-objective land-use allocation 

problems. In other words, the study aimed 

to assess the performance of meta-heuristic 
algorithms as secondary tools for land-use 

managers in creating land-use suitability 

assessment plans and achieving optimal 
outcomes for various objectives. In general, 

understanding problems through 

mathematical concepts and applying 

existing rules to problem-solving are 
critical components of working with 

algorithms. However, determining the most 

suitable locations for land uses is 
recognized as one of the most significant 

challenges in land-use planning. Therefore, 

it should be done based on desirability and 

considering their economic, social, and 
environmental consequences.  

 Consequently, different approaches have 

been classified for various uses in resolving 
these conflicts. In this study, three 

approaches, namely MOLA, GSA, and IP, 

each serving different purposes within 
MCDM, were compared for land-use 

assessment and land-use allocation, 

depending on different decision-making 

rules. 
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Materials and methods 

Introducing the study area 

Birjand Watershed, located in South 
Khorasan Province, Iran, was selected as 

the study area in this research. According to 

the latest available census in 2016, the 

population of Birjand was estimated to be 
261324 people predicted to increase to 

around 308617 people in 2025. Therefore, 

urban planning for housing and developing 
the area in the coming years is one of the 

most critical challenges for urban planners. 

This area is located in the latitudes and 

longitudes of 32°44′ to 33°8ʹ N and 58°41′ 

to 59°44′ E, respectively (Figure 1). The 
total area of Birjand Watershed is about 

3435 km
2
 (980 km

2
 as plains and the rest as 

highlands), in an arid region with average 

annual precipitation of 140 mm and average 
temperature of 16.5 °C. Plus, the maximum 

and minimum elevations above sea level of 

the Birjand watershed are estimated to be 
2720 m (Koh Shah) and 1180 m (Fadeshk 

area), respectively. 

 

 
Figure 1. The geographical location of Birjand Watershed 

 
Methodology 
The history of modeling reveals that there 

are different tools to analyze the land, which 

are known as land-use simulation models. 

These models simplify reality, but the 
increase in computational power over the 

years has made it possible to combine more 

complexity in these models (Tolk and 
Glazner, 2019). In this study, three 

optimization algorithms of Multi-Objective 

Land Allocation (MOLA), Gravitational 
Search Algorithm (GSA), and Image 

Processing (IP) technique were employed to 

allocate urban land-use in the Birjand 

Watershed. First, the urban land use 

suitability layer was prepared using Fuzzy 
ANP, Boolean and WLC methods. As such, 

13 criteria, including slope, aspect, height, 

soil texture, soil depth, soil drainage, land 

cover, and distance from town, road, power 
lines, faults, rivers, and water resources were 

selected as effective layers (benchmark 

maps) for land-use suitability assessment in 
urban development. Furthermore, to prepare 

the constraint map, parameters such as areas 

with slopes greater than 70%, protected 
areas of the Environmental Protection 

Organization, flood-prone areas, and 

protected land use were considered. After 

collating these layers in a spatial database, 
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they were fuzzyfied. The weights of the 

factors were then calculated using the 

Analytical Network Process technique. 
Then, by considering the weight of each 

criterion derived from the ANP and using 

the weighted linear combination (WLC) 

method, the environmental suitability maps 
were prepared. Eventually, constraint maps 

for the study area were prepared using the 

Boolean method. In this step, due to the 
unequal weight of the raster layers, the maps 

were standardized by fuzzification in the 

range 0 to 255. The resulting layer was 

considered as the environmental suitability 
map. 

Since IP and GSA algorithms require 

powerful programming software, the 
MATLAB software was used for this 

purpose. In general, the study consisted of 

two parts including preparing/producing 

maps and spatial data (using GIS) and 
programming to optimize objectives (using 

MATLAB). It should be noted that the 

MOLA algorithm was also implemented in 

IDRISI software. Also, as MOLA and IP 
algorithms can only make single-purpose 

decisions, the environmental suitability 

index was considered for both methods in 
this research. In contrast, given that GSA 

meta-heuristic algorithm can make multi-

objective decisions, the fitting functions 

and objectives were evaluated using meta-
heuristic algorithms to create optimal 

outcomes. In general, different steps 

involved in this research are summarized in 
Figure 2. 

 

 
Figure 2. Steps of the present study under the application of MOLA, IP,  

and GSA optimization algorithms 

 
GSA algorithm 

GSA is a type of swarm intelligence 
optimization algorithm, where individuals 

are influenced by Newton's law of gravity 

and the laws of motion (Sun et al., 2018). 

This algorithm explores a multidimensional 
search space to identify the maximum value 

of the objective function. Essentially, each 

entity in this algorithm possesses 

knowledge of the positions and locations of 
other entities, forming an artificial system 

through the exchange of information (Han 

et al., 2017). 

 In this study, the suitability of urban land 
use was initially assessed based on various 

objectives and criteria. Subsequently, 
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multiple fitness functions, such as spatial and 

ecological considerations, environmental 

suitability, minimal alterations, landscape 
criteria, and other objectives aimed at 

achieving an optimal outcome, were 

computed using meta-heuristic algorithms. 

Ultimately, these objectives were formulated 
to address land-use allocation issues and 

create an optimal model. Unlike the other 

two algorithms, which only focused on 
maximizing environmental suitability, this 

study simultaneously applied multiple 

objectives, a unique advantage of these 

algorithms. 
 Here, the objectives are defined within 

the framework of sustainable development 

principles and characteristics related to 
spatial optimization for land-use allocation 

problems using the GSA algorithm as 

follows: 

 

Maximizing environmental suitability 

Land-use allocation is performed based on 

physical, environmental, and infrastructural 
factors toward maximizing environmental 

suitability, which requires determining 

maps related to the effective factors and 
combining them. In this study, these maps 

were weighted and integrated based on 

Fuzzy ANP and WLC methods, 
respectively. 

 

Maximizing ecological suitability 

This item reduces the cost of social capital 
and increases the economic benefits to 

societies. 

 

Minimizing land-use conversion Maximizing 

Ecological assessment in any region, with 

regard to land-use planning, has unique 

advantages toward achieving sustainable 
development (Yong et al., 2010). 

Ecological benefits of land-use 

management can be assessed using 
Ecosystem Service Valuation (ESV), in 

which different areas with different ESVs 

are assessed (Kong et al., 2009). 

 

Landscape sustainability 

In landscaping concepts, compact and 

circular forms have more stability than 
fragmented forms, which is achieved by 

applying the maximization of compression 

function. 
 

Maximizing compactness 

For this, numerous concepts were 

considered including optimizing a more 
productive and profitable spatial model, 

reducing the pressure of town development, 

facilitating management, increasing 
landscape diversity through green 

infrastructure, efficient use of resources and 

energy, increasing access to facilities, 
reducing traffic, less need to 

services/infrastructure, and developing 

social equality. 

 

Limitations 

In this research, flood-prone areas with 

more than 70% slope, the required areas for 
urbanization, inclusion of only one land use 

per pixel, and the total area were considered 

as limitations. 
 

IP Algorithm 

Image processing involves the application 

of various algorithms to extract essential 
information from existing images (Lillo-

Castellano et al., 2015). One branch of 

image processing focuses on image 
enhancement, which includes techniques 

like applying fading filters and increasing 

contrast to improve the visual quality of 

images and ensure their accurate display 
(Joshi, 2018). There are numerous image 

processing algorithms, some of which are 

employed to correct or remove salt-and-
pepper noise and enhance edges (Wang et 

al., 2016). 

 The method employed here involves 
sorting all pixels based on their values. The 

required number of pixels for urban use is 

then selected in ascending order of their 

values, with the value of the last selected 
pixel serving as the threshold. Subsequently, 

all pixels with values exceeding this 

threshold are chosen, and area maps are 
defined. Following this, a two-dimensional 

filter is applied to eliminate noise, resulting 

in a compressed and consolidated map. 

 

MOLA algorithm 

Eastman (1993) suggested an ideal point-

based heuristic approach to optimize land 
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use planning which is called MOLA. The 

MOLA method is a multi-criteria decision-

making method to create optimal solutions 
in spatial allocation for multiple and 

incompatible land uses (Riveria & Maseda, 

2006). The multi-objective land allocation 

method solves land-use conflicts for a land 
unit (cell) based on proximity to the ideal 

point and ultimately assigns the cell to uses 

with the highest grade (Olmedo, 2018).  
The goal of this algorithm is to find an 

optimal solution based on iterative 

processes, in which land-use suitability for 

all uses is measured based on their ranks 
and grades (Irina et al., 2019). There are 

many examples of using MOLA method for 

land use planning (Fataei and 
Mohammadian 2015; Mehri et al. 2018; 

Sitko and Scheer 2019) which mainly focus 

on the natural environment or protected 
areas and do not consider the mixture of 

environmental condition with peri-urban 

and urban areas. 

 
The MOLA method uses the following 

formula: 

1)                𝑆𝑘 = (∑ 𝑋𝑖 × 𝑊𝑖

𝑖

∏ 𝑟𝑗

𝑗

)

𝑘

 

2)                             𝑆 = ∑(𝑆𝑘 × 𝑊𝑘) 

where 𝑆𝑘  defines the suitability of land 

under objective 𝑘, (𝑋𝑖)𝐾 is the 

standardized value of criterion 𝑖 under 

objective 𝑘, (𝑊𝑖 )𝐾 is the assigned weight 

of criterion i under objective 𝑘, (𝑟𝑗)
𝐾

is the 

constraint score of 𝑗 under objective 𝑘 

which takes either 0 or 1 value. Also, 𝑆 
denotes the multi-objective suitability and 

W is the weight assigned to the objective 𝑘 

(Nourqolipour et al., 2015). 
 By integrating MCE with GIS and 

MOLA, routine map overlap procedures 

can be significantly improved (Zhang et al., 
2013).  MCE and MOLA, while providing a 

framework for solving multi-objective land 

allocation problems in objectively 
inconsistent cases, allow the individual to 

assess the relative priorities of an area 

based on the criteria and indicators of that 

area (Hajehforooshnia et al., 2011). 

 In this study, land use maps were used to 

choose appropriate urban land use in 

Birjand Watershed through MOLA method. 
Then, to resolve the conflicts between 

competing land-uses, a weight was assigned 

to each of the land uses based on expert 

judgment and by applying the desired area 
for each land-use. Then, optimizing land-

use allocation of the Birjand Watershed was 

performed using the MOLA method based 
on land use suitability maps. It should be 

noted that expert judgments were made 

based on the opinions of a panel of 

environmental experts with a view to their 
expertise, experience, and knowledge of 

macro decision making and environmental 

assessment and planning. MOLA input data 
includes land suitability maps ranked in 

descending order for each objective. In 

other words, the best rank and the highest 
value are assigned the value 1. In other 

words, the descending map indicates the 

best grades for the intended objective, and 

the ascending map shows the worst ranks 
for other objectives (Honarbakhsh et al. 

2017). Finally, in the MOLA method, a 

repetitive operation is performed to 
combine the ranked maps based on their 

weights. In our urban land use allocation 

with the MOLA algorithm, 50 cells were 
considered as the area threshold. As before, 

the area required for each land-use in the 

process of implementing the algorithm was 

determined with expert opinion. 
 

Validity and Reliability of the Research 

Instrument 
The obtained results of MOLA, IP, and 

GSA algorithms were compared to 

determine their validity in shaping the 

future urban land use of the Birjand 
Watershed. In order to have equal 

conditions for comparison of the 

algorithms, the number of cells needed in 
the urban land-use was estimated to be 

around 6000. Finally, the following 

methods were used to compare and evaluate 
the efficiency of the studied algorithms. 

1. Visual assessment and consideration of 

coherence of allocated urban land 

patches. 
2. Using the statistical parameters (such as 

mean and standard deviation) of urban 
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land use suitability in the allocated 

patches. 

3. Landscape metrics analysis, including 
the number of patches (NP), patch 

density (PD), patch shape index 

(SHAPE_MN), perimeter-area 

ratiometric (PARA_MN), proximity 
index (PROX_MN), and patch cohesion 

index (COHESION) in FRAGSTATS 

software. 
 

Results 

Optimization objectives 

Maximizing land-use suitability 
Here, suit ijk, which determines the 

suitability of cell (i,j) for the kth land use, 

was calculated using equation 3-5. In other 

words, this equation confers the potential or 
suitability of a cell to create urban land-use 

based on physical, environmental, and 

infrastructural factors. 

1)  𝐹(𝑥)  =  𝑀𝑎𝑥 ∑ ∑ ∑ 𝑆𝑢𝑖𝑡𝑖𝑗𝑘  𝑋𝑖𝑗𝑘

𝐶

𝑗=1

𝑅

𝑖=1

𝐾

𝐾=1

 

2)   𝑆𝑗𝑐𝑖 =  𝑊1 . 𝑎 + 𝑊2. 𝑏 +  𝑊3. 𝑐 +  𝑊4. 𝑑 +  … … … … … … +  𝑊13 . 𝑘 

3)  ∑ 𝑤𝑖 = 1
13

𝑖=1
 

  
Figure 3 shows the urban land-use 

suitability of fuzzy ANP and WLC 

techniques. The blue points inserted in the 
center of the mentioned map are the most 

suitable points for urban land-use, which 

are located around Birjand town and the 

Birjand plain. 

 

 
Figure 3. Urban land-use suitability map using fuzzy ANP and WLC techniques 

 
Minimizing land-use conversion 
The minimum conversion function is 

calculated by Equation 6, which indicates 

the ease of land-use change from u to m. In 

general, land-use conversion bans in the 
study area, such as rocky outcrops, clay 

playa, irrigation farming, riverbed, planted 
forests, woodland, and shrub-land are 

introduced in Table 1. The ability of land 

cover change alters in descending order 

from low-dense areas (poor rangelands), 
semi-dense rangelands, dense rangelands, 
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and rain-fed agriculture, respectively. The 

range assigned to facilitate land-cover 

change to urban land-use is variable 
between zero and one, in which a lower 

score represents a greater constraint. Figure 

4 displays the ease of conversion of land-

cover to urban land-use based on Equation 
6 and Table 1. 

Equation 6: F(x) = min (1-convum) 
 

Table 1. Land-use change constraints in the present research 

Land cover Residential coverage 

Clay playa/Rocky outcrops 0 

Irrigation farming 0 

Planted forests 0 

Riverbed/River Basin 0 
Woodland/Shrub-lands 0 

Rain-fed agriculture 0.25 

Dense rangelands 0.25 

Semi-dense rangelands 0.5 

Low-dense rangelands 0.75 

Residential areas 1 

 

 
 

Figure 4. The map of conversion of land use/cover to urban land use 

 
Maximizing ecological suitability 

The preservation of natural features and 
environmental structure to maximize the 

green areas can be achieved using the value 

of ecosystem services (ESV). The process 
is achieved using Equation 7, which 

represents maximizing current ESV and 

future ESV.  
Equation 7: F(x) =Max (ESV

future
-ESV

current
) 

The ecological values of land use and 

ESV differences between urban land-use 
and current land uses are listed in Table 2 

for each 50 by 50 m pixel (adapted from the 

study performed by Costanza et al., 1997). 

As can be seen, the most valuable land uses 
of the studied area were respectively 

determined for planted forests, woodland, 

shrub-lands, dense rangelands, semi-dense 
rangelands, irrigation farming, and rain-fed 

agriculture. It should be noted that the most 

damage to the ecosystem caused by land-
use change is determined based on the 

value of the mentioned uses. Differences 

between ESV resulting from urban land-use 

and current land uses of the studied area are 
shown in Figure 5. 
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Table 2. The value of ecological land use and the difference of ecosystem service values between future 

land use and current land use per pixel 

Land-Use type 

Ecosystem 

service value 

(Toman.ha-1) 

Ecosystem service value 

per unit of land use 

(Toman.2500 m-2) 

Urban land value minus 

Ecosystem service value 

(43592-EVS) 

Clay playa/Rocky outcrops 371 43592 0 

Rain-fed agriculture 6114 718395 -674803 

Irrigation farming 6114 718395 -674803 

Planted forests 18201 2138617 -2095025 

Low-dense rangelands 371 43592 0 

Semi-dense rangelands 6405 752587 -708995 

Dense rangelands 6405 752587 -708995 
Riverbed/River Basin 371 43592 0 

Woodland/Shrub-lands 12157 1428447 -1384855 

Residential areas 371 43592 0 

 

 
 

Figure 5. Difference between the EVS resulting from urban land-uses and current land-uses 

 
Maximizing compactness function 

To achieve this objective, 15 zones were 
designated for urban use, and the algorithm 

was tasked with selecting 15 urban center 

points within these zones. These points 
were chosen based on their highest density, 

which relied on the fitness level of each cell 

in conjunction with its neighboring cells for 

each land-use type. This fitness measure 
was derived from the summation of three 

factors: maximum environmental 

suitability, ease of land use change, and the 
value of ecosystem services, collectively 

forming what is referred to as the fitness 

map. Subsequently, the urban center points, 
also known as map gravity points, were 

determined through 50 iterations of the 

algorithm (refer to Figure 6). Figure 7 
illustrates the spatial displacement changes 

per pixel (mass) during different iterations, 

showcasing a reduction in the center of 
gravity's displacement with increasing 

iterations, ultimately converging toward 

optimal points. 

 The oscillating pattern observed in the 
diagram is a result of the mass's movement 

towards the center of gravity. In certain 

instances, the mass passes through the 
center of gravity, causing this motion to 

exhibit a spring-like behavior. As the mass 

progresses toward the optimal solution, this 
vibrational movement gradually diminishes, 
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signifying that it has a shorter distance to 

travel to reach the highest density. 

 Subsequently, circular regions with a 
diameter of 2500 square meters (equivalent 

to a radius of 50 cells) were defined around 

each center point. The choice of a circular 

shape was driven by its compact and 
geometric characteristics. Following this, 

certain existing urban land-use areas, 

referred to as mask regions, were isolated 

and assigned a value of zero. In the 

subsequent step, the necessary area for 
urban land use was selected from the 

remaining regions based on their values. 

Finally, the results pertaining to urban land-

use optimization were obtained after 
thirteen minutes of algorithmic processing 

(see Figure 8). 

 

 
 

Figure 6. Centers with the highest fitness for urban land-use 

 

 
Figure 7. Spatial displacement changes of urban zone centers with increasing repetitions 
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Figure 8. Areas with an average radius of 50 cells around the center of gravity  

(areas with the highest density) 

 
Maximizing landscape metrics 
This function is obtained by maximizing 

the compression function. In landscape 

metrics, compact and circular shapes are 
more stable than other shapes, and as such 

this concept was included in the 

compression objective function. 

 

Constraints 

Prohibition of land-use change in the 

protected areas 
This prohibition included protected areas, 

steep slopes, and erodible/earthquake-prone 

areas, identified during preparation of 

suitability maps. 

 

Limitation of the total/land area 

The sum of all land uses should equal the 
total area of the watershed, namely around 

3430.691 ha (Equation 8). 

Equation 8: ∑ 𝑥𝑘
3
𝑘=1 = 3430.691(km2)  

 

Land-use demand restrictions 
The projected area in the 20-year vision of 

Iran (2024) was calculated using the 

Markov chain model and cellular automata 

by Yousefi and Jahanishakib (2019) and 
was equivalent to 18.9 km

2
 of urban land 

use (18900000m
2
). Therefore, the required 

urban land use was estimated to be around 
7560 cells of 50 by 50 m. 

Spatial restrictions 
For this section, we ensured that only one 

land use is allocated to each cell. 

 

Implementation of MOLA, IP, and GSA 

optimization algorithms 

GSA algorithm 

In this algorithm, the selection of the most 
suitable locations was guided by objective 

fitness functions. These functions 

encompassed objectives such as 
maximizing environmental and ecological 

suitability, achieving compactness, 

adhering to land-use planning principles, 

and minimizing land-use changes, while 
considering criteria such as spatial 

development constraints and demand. 

Furthermore, the centers of gravity, along 
with their surrounding areas exhibiting the 

highest density of urban land-use 

suitability, were identified by optimizing all 
the specified objectives and constraints 

through the GSA algorithm. Essentially, the 

potential solutions relevant to object 

placement within this algorithm were 
inherent to the problem, and objectives 

were established based on the fitness 

function. Ultimately, urban land-use 
allocation was modeled using the GSA 

algorithm, as illustrated in Figure 9. 
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Figure 9. Urban land-use allocation using the GSA algorithm 

 
IP algorithm 
In this approach, pixels were organized 

according to their pixel values. 

Subsequently, a specified number of cells 

were selected to address objectives related 
to urban land use. Typically, the value of 

the last cell selected served as the threshold 

value. Following this step, blur filters and 

image contrast enhancement techniques 
were applied to eliminate noise, enhance 

image quality, and ensure accurate image 

presentation in digital monitoring 

environments. Figure 10 illustrates the 
allocation of urban land use using the IP 

algorithm.

 

 
Figure 10. Urban land-use allocation using the IP algorithm 
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MOLA algorithm 

The result from MOLA application is 

shown in Figure 11. In this process, the 
multi-objective allocation algorithm was 

applied based on the maximum land-use 

suitability, consideration of weights (the 

maximum allocation), and the required 

area. The result of this algorithm was 
confined to the areas around the current 

city. 

 

 
Figure 11. Urban land-use allocation through the MOLA algorithm 

 

Validation based on visual, statistical, and 

landscape metrics 

Visual assessment  
Results of Figures 9, 10, and 11 confirm 

that all three algorithms used in the present 

study have relatively good performance 
concerning urban land-use suitability in the 

allocated patches. The GSA algorithm 

presented different urban patches and two 

other algorithms displayed almost identical 
locations for urban planning. 

 

Statistical parameters 
The statistical parameters (such as mean, 

standard deviation, and coefficient of 

variation) for urban land-use suitability in 

the allocated patches are shown in Figure 

12. Results of the mean statistical parameter 
illustrated that the MOLA algorithm with a 

value of 215.136 had better efficiency for 

urban land-use suitability than IP (211.364) 
and GSA (210.710). Results of the standard 

deviation also showed that the MOLA 

(41.037) and IP (41,729) algorithms were 

better than the GSA algorithm (42.699). On 
the other hand, the GSA algorithm had the 

lowest coefficient of variation (4.864) 

compared to IP (5.065) and MOLA (5.243) 
algorithms. 
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Figure 12. Statistical comparison of the efficiency of GSA, IP, and MOLA  

algorithms in urban land-use allocation 

 
Landscape metrics 

The efficiency of algorithms in urban land-
use allocation using analytical approaches 

of landscape metrics, e.g., the number of 

patches (NP), patch density (PD), 
perimeter-area ratiometric (PARA_MN), 

proximity index (PROX_MN), and patch 

cohesion index (COHESION), were 

compared in the Birjand watershed (Table 
3). The values in Table (3) indicate the 

relative efficiency and superiority of 

different algorithms in different landscape 
metrics. Overall, it can be seen that each 

algorithm had advantages in at least two 

landscape metrics (highlighted points). The 

highest values in indices of PD and 

SHAPE_MN with values of 0.020 and 
1.261 were recorded for the GSA 

algorithm. In contrast, the lowest values of 

NP and PARA_MN (equivalent to 150 and 
531.617, respectively) were obtained for the 

IP algorithm, which indicates the relative 

superiority of this algorithm over others. In 

addition, the MOLA algorithm had the 
highest values (relative superiority) for 

landscape metrics PROX_MN and 

COHESION (equivalent to 240.002 and 
98.380, respectively) than the GSA and IP 

algorithms. 

 
Table 3. Comparison of landscape metrics in optimizing land-use allocation 

Result of 

urban land 

use allocation 

/ Comparison 

criteria 

Landscape metrics 

Number 

of 

patches 

(NP) 

Patch 

density 

(PD) 

Average shape 

index 

(SHAPE_MN) 

Average 

perimeter per 

spot area 

(PARA_MN) 

Proximity 

index 

(PROX_MN) 

Patch 

cohesion 

index 

GSA  123 0.020 1.261 544.134 50.313 98.127 

IP algorithm 105 0.017 1.249 531.617 39.479 98.190 

MOLA  119 0.019 1.256 558.818 240.002 98.380 

 
Discussion 

The effective utilization of theories and 
models necessitates an understanding of the 

underlying assumptions, the identification 

of possibilities and limitations, and the 

application of these theories in alignment 
with their intended purposes. Conversely, 

as the complexity of a theory or model 

increases, users are required to possess a 

higher level of practical proficiency. In 

current conditions, decision support 
systems have streamlined this process 

(Briasolis, 1388). To develop algorithms for 

land use suitability assessment, the pivotal 

step involves identifying stable features and 
translating them into quantitative functions 

and concepts. In this study, we have 

undertaken this task, striving to incorporate 
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the most critical indicators of sustainable 

land use suitability assessment, backed by 

robust scientific support. 
 In the realm of Geographic Information 

Systems (GIS), the criteria utilized are often 

characterized by inaccuracies and 

ambiguities. Consequently, alternative 
methods must be embraced to mitigate 

these issues. The employment of multi-

criteria decision-making methods stands as 
a reliable approach to address the 

aforementioned challenges. In this study, 

we have employed fuzzy and Analytic 

Network Process (ANP) methodologies to 
enhance accuracy, optimize parameters, and 

bring our findings closer to reality. This 

approach enables the refinement of weights 
and input parameters while concurrently 

addressing uncertainties associated with 

assessed parameters, thus promoting a 
comprehensive standardization in research 

(Chamanehpour et al., 2020). Furthermore, 

since multiple factors influence the land-use 

suitability assessment process, potentially 
with opposing or synergistic effects 

(Pourebrahim et al., 2011), we have applied 

the ANP method to resolve issues related to 
factor independence, feedback loops, and 

interactive factors influencing evaluations. 

 Within this study, we have selected 13 
environmental and infrastructure factors for 

urban land-use assessment. Our approach 

considered various aspects, including the 

selection of comprehensive criteria for 
accurate assessments, the incorporation of 

uncertainties, the standardization of diverse 

factors to enhance evaluation precision, and 
the application of the Analytic Network 

Process to address false assumptions, 

feedback loops, and interacting factors 

influencing evaluations. 
 This study also involved a comparison 

of three methods: MOLA, IP, and GSA. 

While the GSA algorithm defined multiple 
objectives for urban land-use allocation, the 

MOLA and IP algorithms optimized only 

for land suitability. Nevertheless, the results 
pertaining to ecological parameters and 

landscape metrics indicated no significant 

differences in algorithm outputs within the 

study area. Nonetheless, since these 
algorithms may exhibit varying 

performances under different conditions 

(utilizing distinct performance 

measurement criteria), it is conceivable that 

the most suitable algorithm may vary 
depending on the specific context. Notably, 

the image processing algorithm and MOLA 

yielded similar outputs, while the GSA 

algorithm exhibited slight differences, 
potentially attributed to a more 

comprehensive consideration of objective 

functions and constraints. 
 In summary, the application of metrics 

used in this research, such as patch 

integrity, coherence, and shape, is 

commonplace in land-use planning. 
Management requirements may vary based 

on their relative importance in urban 

planning processes. Additionally, the 
accuracy of land-use change simulation 

models is influenced by numerous factors, 

including the precision of input data, map 
classification, factor selection for land use 

determination, and simulation methods 

(Pahlavani et al., 2017). Given the multi-

objective and nonlinear nature of 
environmental challenges, achieving 

precise solutions in large environments with 

multiple objectives using conventional 
methods can be exceedingly challenging 

and may yield conflicting or contradictory 

outcomes. Therefore, this research 
introduces one of the most powerful 

algorithms in the field of artificial 

intelligence, the GSA algorithm, as an 

auxiliary tool for land-use managers in 
developing land-use suitability assessment 

plans. This process evaluates land-use 

suitability through mathematical and spatial 
optimization, providing a combined method 

for multi-objective optimization in urban 

land-use allocation planning. The positive 

attributes of the GSA algorithm, such as 
rapid convergence, avoidance of local 

optimizations, reduced computational 

complexity compared to evolutionary 
algorithms, and minimal memory usage 

compared to collective intelligence 

algorithms, open up new avenues for 
research. This study represents the first 

application of this algorithm to land 

allocation issues. Additionally, the MOLA 

algorithm, another powerful tool employed 
in this research, has demonstrated its 

capacity to address complex factors, 



Elham Yousefi & Fatemeh Jahanishakib / Environmental Resources Research 11, 1 (2023)                                       17 

 

limitations, and multidimensional 

environmental effects (Masoudi et al., 

2021). 
 Mwasi (2001) advocated that all 

objectives should be simultaneously 

addressed in land-use allocation decisions. 

To achieve this, objectives should be 
prioritized, ranked, assigned, and resolved. 

Thus, precise tools are indispensable for 

resolving conflicts. MOLA offers a 
framework to tackle such conflicts and 

manage the allocation of limited land 

resources to meet limitless demands. Yang 

et al. (2018) further affirmed that optimal 
solutions in MOLA tend to align more 

closely with reality, a result attributed to 

ongoing enhancements in mutation and 
crossover strategies during algorithm 

execution. Furthermore, selecting the 

appropriate number of iterations in this 
algorithm can yield optimal solutions 

within a reasonable time frame. 

 Current optimization methods fall under 

the category of multi-objective approaches, 
enabling the simultaneous evaluation of 

various objectives, such as suitability rates 

and landscape metrics, in land-use 
management. It is crucial to note that while 

multiple objectives can be considered, these 

methods explore numerous potential 
solutions to determine the best approach in 

each context, taking into account various 

factors, including time constraints. Given 

that the MOLA method can generate 
suitable solutions in terms of land-use 

suitability, it is suggested that MOLA be 

combined with one of the optimization 
methods to address conflicts and 

incorporate multiple objectives. In this 

context, Kamyab et al. (2016) utilized 

genetic algorithms to enhance the MOLA 
method. Ligmann‐ Zielinska et al. (2008) 

improved the MOLA model by eliminating 

one of its constraints, namely, scattered and 
disjoint patterns. As a result, they found 

that applying a density-based design 

constraint could enhance the efficiency of 
the model by promoting infill development 

or redevelopment, thus optimizing the 

utilization of urban spaces. 

 In conclusion, our research indicates that 
by defining a broader array of objective 

functions and constraints, results become 

more realistic, and the need for intervention 

by decision-makers is minimized. While the 

outcomes generated by the GSA algorithm 
may not always be the most precise, they 

maximize the overall fitness in situations 

involving limited land parcels. These 

parcels depend on both demand levels and 
required consolidation, making this 

approach more realistically advantageous. 

 

Conclusions 

This study investigated the effectiveness of 

MOLA, IP, and GSA algorithms as a 

decision support tool for land use planning. 
Different algorithms solve the land use 

allocation problem in different ways. The 

MOLA algorithm is based on a computer 
decision matrix and provides an opportunity 

to resolve conflicts and overlaps between 

regions based on the optimal fit of each 
pixel. In the IP method, the basis of the work 

is based on the sum of the pixels' highest 

value (fit or suitability) and the amount of 

area required for urban land use. The GSA 
algorithm calculates all target functions for 

all pixels using gravitational search rules and 

determines the gravity areas of the image 
based on the force exerted from each pixel 

on the other pixels. Areas with the highest 

density are the best development centers for 
urban land use. In this algorithm, the desired 

answers are the position of objects in the 

problem space and the number of objects is 

determined according to the fitting function. 
In this study, we presented an integrated land 

use management strategy using GIS-based 

land cover analysis to determine the optimal 
sites that meets all criteria for our goal. This 

study also shows that the algorithms used, as 

an automated GIS-based evaluation method, 

help to minimize land use planning 
workload. In determining land use 

arrangement based on quantitative and 

qualitative parameters, the overall suitability 
of each land unit was achieved based on the 

criteria of environmental suitability 

(maximizing suitability), compactness 
(maximizing compactness), ease of land use 

change (minimizing land use change), 

ecological suitability (maximizing the 

ecological fit (landscape) and restrictions 
such as the amount of land required for 

different land use, the total area, the 
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allocation of only one land use per pixel. 

Then, the results were evaluated through 

land use metrics. Based on the results, in 
terms of the average urban land use 

suitability, the MOLA algorithm has better 

performance, followed by the IP and GSA 

algorithms, respectively. In terms of 
standard deviation, MOLA and IP 

algorithms are better than GSA. Also, the 

landscape metrics analysis showed that 
different algorithms have different efficiency 

and superiority in different metrics. For 

example, the MOLA algorithm performed 

better for patch cohesion indices and the 
neighborhood index. 

 The meta-heuristic algorithms are very 

helpful in solving complex and diverse 
problems of land use allocation with large 

dimensions, numerous goals with high 

accuracy and speed, providing near-optimal 
responses. Therefore, we suggest that such 

algorithms be used in solving other problems 

of land use allocation with large and 

complex space and other related research 
such as impact assessment projects. 
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