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Abstract1 

One of the most commonly used statistical models for characterizing the variations of 

tree diameter at breast height is Weibull distribution. The usual approach for estimating 

parameters of a statistical model is the maximum likelihood estimation (likelihood method). 

Usually, this works based on iterative algorithms such as Newton-Raphson. However, the 

efficiency of the likelihood method is not guaranteed since there is no assurance that the 

Newton-Raphson method for maximizing the log-likelihood function will converge. In such 

cases, one option is to use a better estimation approach. In this study, several methods were 

compared for estimating the parameters of two- and three-parameter Weibull distributions. 

We applied ten methods for two-parameter and twelve methods for three-parameter cases. 

The data set was collected from natural beech dominated forest in northern Iran. The results 

demonstrated that among the estimators investigated for two-parameter Weibull 

distribution, the percentile method outperformed other competitors. In contrast, for three-

parameter Weibull distribution, the trimmed L-moment (TL-moment) method and the 

modified method of moments (type I and type II) outperformed other competitors in terms 

of Cramer Von-Mises criterion and Kolmogorov-Smirnov criterion, respectively. 

 

Keywords: Least square method, Method of maximum product spacings, TL-moment, 

Weibull distribution, Weighted maximum likelihood estimator. 
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Introduction 
In applied forestry, diameter distribution 

is of great importance in describing forest 
stand structure. It is useful for estimating 
growth and yield and planning forest 
management activities (Hyink and Moser, 
1983; Burkhart and Tomé, 2012). It can 
also be used to infer past disturbance event 
and the developmental stage of the stand 
(Coomes and Allen, 2007; Ghalandarayeshi 
et al., 2017).  

During the last four decades, numerous 
probability density functions (pdf) such as 
gamma, Johnson’s SB, lognormal, and 
Weibull distributions have been examined 
for modelling distribution of the diameter at 
breast height (dbh) (Reynolds  et al., 1988; 
Ghalandarayeshi, 2019). Initially, the 
Weibull distribution was used for 
explaining the diameter distributions in 
forestry (Bailey and Dell, 1973). The 
Weibull model is one of the most 
commonly used statistical distributions 
used for modelling dbh. For a review, we 
refer reader to Bailey and Dell, (1973) for 
quantifying the variations of    the dbh with 
Weibull distribution, Little, (1983) for 
modelling dbh of mixed stands through the 
three-parameter Weibull distribution, 
Kilkki et al., (1989) for the use of Weibull 
distribution in modelling dbh of Finnish 
pine (Pinus sylvestris)), Zhang et al., (2003) 
for comparison of estimation methods for 
fitting Weibull and Johnson’s SB 
distributions fitted to mixed spruce, Newton 
et al., (2005) for modelling dbh of black 
spruce (Picea mariana Mill) plantations 
using three-parameter Weibull distribution, 
Merganič and Sterba, (2006) for 
characterizing dbh using Weibull 
distribution, Zhang and Liu, (2006) for 
modellig dbh of irregular forest stands by 
Weibull and modified Weibull 
distributions, Gorgoso et al., (2007) for 
modelling dbh of Betula alba L. stands 
using two-parameter Weibull distribution, 
Lei, (2008) for comarison of three 
estimators of the Weibull parameters fitted 
to Chinese pine (Pinus tabulaeformis), 
Stankova and Zlatanov, (2010) for 
modeling dbh of Austrian black pine 
plantations based on percentile and 
projection methods, Zhang et al., (2010) for 
compatibility of stand basal area predictions 

based on forecast combination, and Duan et 
al., (2013) for modelling and estimating 
dbh using Richards model and three-
parameter Weibull distribution. The pdf and 
cumulative distribution function (cdf) of a 
three-parameter Weibull distribution are, 
respectively, given by Norman et al., (1994); 
Prabhakar Murthy et al., (2004) and Dodson, 
(2006) as follows:  
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for >x  , > 0 , > 0  and   . 

Here, the parameters  ,   and   are 

known as the shape, scale and location 

parameters, respectively. If we set = 0  in 

Abdul-Moniem, (2007) and Bailey and 
Dell, (1973), we have the pdf and cdf of a 
two-parameter Weibull distribution, 
respectively.  

Statistical inference for Weibull 
distribution parameters has a long history. 
For two-parameter Weibull distribution we 
refer to method of L-moment (Hosking, 
1990), method of percentile (Hassanein, 
1971; Wang and Keats, 1995), weighted 
least square (Van Zyl and Schall, 2012; 
Hung, 2001; Zhang et al., 2008; Kantar, 
2015), generalized least square (Engeman 
and Keefe, 1982; Kantar, 2015), weighted 
maximum likelihood (Jacquelin, 1993), 
method of moment and logarithmic moment 
(Wayne, 1982; Norman et al., 1994; 
Dodson, 2006), and method of rank 
(Teimouri and Nadarajah, 2012). In the 
case of three-parameter Weibull 
distribution, the most popular approach, 
i.e., the method of maximum likelihood 
may break down under some situations. To 
tackle this issue, the method of modified 
maximum likelihood and modified 
moments have been proposed (Cohen and 
Whitten, 1982). Also, weighted maximum 
likelihood estimators have been introduced 
in the literature (Cousineau, 2009). There 
are other methods developed in the 
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literature for estimating the parameters of 
three-parameter Weibull distribution, 
among them we refer to TL-moment 
(Teimouri et al., 2013), and method of 
maximum product spacing (Cheng and 
Amin, 1983). The goal is to propose the 
best method of parameters estimation for 
Weibull distribution. We compare several 
methods for estimating the parameters of 
the two- and three-parameter Weibull 
distribution.  

 

Materials and Methods 

Materials 

This study was conducted in a semi 

natural beech dominated forest in district 1, 

compartment 111, located at Kordkuy 

forest in Golestan Province, northern Iran 

(UTM zone 40: E247508, N4065346). The 

forest had been managed with single 

selection harvesting techniques until 

beginning of 2018. Elevation of the study 

area is about 1488 meters above sea level, 

with an average temperature of 15 degrees 

centigrade and a mean annual precipitation 

of 600 mm (G.N.R.W.M., 2017). The 

geological substratum is Precambrian 

sediments, mainly composed of 

metamorphic schist which is known as 

Gorgan green schist (Kurdi et al., 2017). 

The soil has been classified as a forest 

brown soil. One 100 × 100 m plot was 

established in an area in the compartment 

where the cover of the tree canopy 

projection was over 85%. All living trees 

with dbh greater than 7 cm within the plots 

were measured using two caliper readings 

at an angle of 90° to one another. The 

summary statistics are provided in Table 1. 

The study area consists of mixed deciduous 

and uneven-aged forests, dominated by 

Fagus orientalis Lipsky (91.19%) 

associated with Carpinus betulus (9.95%), 

Acer velutinum (1.55%), Alnus subcordata 

(0.51%), Tilia begoniifolia Steven (0.51%) 

and Prunus avium L. (0.25%) species.  

 
Table 1. Estimation results for fitting three-parameter Weibull model to DBH data. 

Number of trees Mean St. Dev. Min. Max. Skewness Kurtosis 

386 25.62 20.73 7.6 101.50 1.68 2.18 

 
Methods 

Let 1 2, , , nx x x  denote the observed 

random sample from two-parameter Weibull 

distribution. Also, let 
(1) (2) ( ), , , nx x x  

denote the ordered random observations. In 
what follows, we review ten known 
methods for estimating the parameters of 
the two- (Subsections 2.2.1-2.2.10) and 
three-parameter (Subsections 2.2.11-2.2.17) 
Weibull distributions. All methods in two- 
and three-parameter cases have been 
implemented using the package called 
ForestFit (Teimouri et al., 2020) developed 
for R (R Core Team, 2018) environment 
and uploaded to CRAN (Comprehensive R 
Archive Network) at https://cran.r-
project.org/ web/ packages/ 
ForestFit/index.html. 

 

Maximum likelihood (ML) 

There is no closed-form expression for 

maximum likelihood estimator (MLE) of 

the two-parameter Weibull parameters. It is 

asymptotically normal and efficient for 

large sample sizes. Many attempts have 

been made to compute or modify the MLEs 

of the Weibull distribution parameters. The 

MLE of the shape parameter is computed as 

the root of the equation:  
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and the MLE of the scale parameter is 

given by (Norman et al., 1994):  
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x
n




 
 
 
  

 

It can be seen that MLE  depends on  

MLE  that must be computed numerically.  

 

https://cran.r-project.org/web/packages/ForestFit/index.html
https://cran.r-project.org/web/packages/ForestFit/index.html
https://cran.r-project.org/web/packages/ForestFit/index.html
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Weighted maximum likelihood (WML) 

It is known that MLEs are generally 

biased. To reduce the bias rate the weighted 

maximum likelihood estimators (WMLEs) 

have been proposed in the literature 

(Jacquelin, 1993). Then WMLEs of the 

shape and scale parameters are given by:  
 

2
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where the weights 
1W  and 

2W  are 

given by:  
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Although the sampling distribution of 

the 
1W  is gamma with shape parameter n  

and scale parameter 1/ n , but the sampling 

distribution of the 
2W  is not known. In 

practice, both random variables 
1W  and 

2W  are replaced by their median 

(Cousineau, 2009). Median of these random 
variables are computed by performing a 
Monte Carlo simulation for different levels 

of small sample size =1, ,100n . When 

n  gets large, both WML and ML 
approaches give the same results.  
 

 

Generalized least square of first type 
(GLS1) 

The parameter estimation using least 
square approach is common in the 
statistical literature. We can see that the 
following regression model holds.  
 

))](1log(log[log )()( ii xFy    (3) 

 

for =1, ,i n  where ( ) ( )= logi iy x . 

The quantity ( )( )iF x , in the right-hand 

side of regression model (Burkhart and 

Tomé, 2012), is replaced by / ( 1)i n   or 

( 0.3) / ( 0.4)i n   (Tiryakioğlu and Hudak, 

2007; Van Zyl and Schall, 2012). Since the 

sample ( )ix  is ordered, the dependent 

variable ( )iy  is also ordered. Therefore the 

variance of dependent variable is not of the 

form 2 I (Kantar, 2015). To tackle this 

issue the generalized least square (GLS) 

technique is proposed (Engeman and  

Keefe, 1982). The GLS estimate, i.e., 
T

GLS )ˆ,ˆlogˆ(ˆ   is given by:  
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where i j .  
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Generalized least square of second type 

(GLS2) 

The second type of GLS estimate, i.e.,  

 
1 1

2
ˆ = ( ) ,T T

GLS Z V Z Z V Y                 (6) 

 

can be constructed if we replace X  

with Z  which is defined as  
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in (4). It is worth noting  that 
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i

i
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.  

 

Weighted least square (WLS) 

The weighted least square (WLS) 

estimate is also given by  
 

1 1ˆ = ( ) ,T T

WLS X W X X W Y               (7) 

 

where ˆ ˆ ˆ= (log ,1/ )T

WLS   , iiv ; for 

=1, ,i n , are coming from (5), and W  

is a diagonal matrix whose entries are 

11, , nnv v  (Kantar, 2015).  

 

L-moment Method (LM) 

By equating the sample L-moment with 

the population counterpart, we can obtain 

the L-moment estimators (Hosking, 1990). 

The r-th L-moment of two-parameter 

Weibull distribution is given by:
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where > 0 , > 0 , =1,2,r , and 

n

iC  denotes the binomial coefficient 

!/ ( !( )!)n i n i  (Hosking, 1990). So       

the first and the second L-moments          
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The first two sample L-moments are:  
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Now, equating 1

L  and 2

L  with 1

Lm  

and 2

Lm , respectively, the L-moments of 

  and   are obtained as:  
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Logarithmic moment method (MLM) 

The logarithmic moment estimators of 

the shape and scale parameters of two-

parameter Weibull distribution are given  

by (Dodson, 2006; Wayne, 1982; Norman  

et al., 1994):  
 

2

2
= ,

6
MLM

S


                                       (8) 

 

and  
 

1= exp{ (1) / },MLMMLM M           (9) 

 

where 2S  and 
1M  are the sample 

variance and the mean of log-transformed 

data, respectively. Also (1) = 0.5772156  . 

It has been shown by Cousineau, (2009) 

and Dodson, (2006) that  the estimator is 

both asymptotically unbiased and consistent 

(Norman et al., 1994).  
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Percentile method (PM) 

The quantile of a two-parameter Weibull 

distribution is:  
 

 
1/

= ln(1 ) ,px p


  
 

 

where 0 < <1p , (Dodson, 2006). 

Using =1 exp( 1) 0.632p    , one can 

construct percentile-based estimators for 

 and   as:  
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and  
 

1 exp( 1)
ˆ = ,PM x                                      (11) 

 

respectively, where 
0.6320 < <px x . The 

suggested values for p  are 0.15 (Wang and 

Keats, 1995) and 0.31 (Hassanein, 1971). 

Statistical tools show that percentile-based 

estimators are, in general, asymptotically 

normal and unbiased (Wayne, 1982).  

 

Moment method (MM) 

The r -th non-central moment for the 

Weibull distribution is (Dodson, 2006; 

Norman et al., 1994; Wayne, 1982):  
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and the moment-based estimator of the 

scale parameter is:  
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Method of rank (MR) 

The method of rank estimator for the 

shape parameter is given by (Teimouri and 

Nadarajah, 2012):  
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where   denotes the sample correlation 

between the ix s and their ranks and CV  is 

the sample coefficient of variation. It was 

shown that MR  performs as good as the 

MLE and so we estimate the scale 

parameter as:  
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In what follows, we review these 

methods to estimate parameters of three-

parameter Weibull distribution. 

 
TL-moment (TL) 

The TL-moment, i.e., 
t

r  is defined as 

(Elamir and Seheult, 2003; Abdul-Moniem, 

2007; Teimouri et al., 2013): 
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for , =1,2,3,t r , where 
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the binomial coefficient !/ ( !( )!)n i n i  

and E(X(i)) is the expectation of the i-th 
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that L-moments correspond to taking = 0t  
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Consider the expectation of the thi  

order statistic (Teimouri et al., 2013) and 

substitute =1t  and =1,2r  (Engeman 

and Keefe, 1982). The estimators of the  , 

 , and   in terms of the TL-moments are 

obtained as:  
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Correspondingly, the first two sample     
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Consider the first moment of three-

parameter Weibull distribution:  

 

 = 1/ 1 .                               (18) 

 

Subtracting (14) from (18) and dividing 

the result by (15) yields:  
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             (19) 

 

Equate (19) to the sample counterpart, 

i.e., 1 1

1 2( ) /m X m  to obtain an estimator 

of   as:  
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Once we have obtained T̂L , by 

equating (17) and (17),   is estimated         

as:  
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and similarly by equating (14) and (16), 

  is estimated as:  

 

   1
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TL TL
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Maximum product spacing (MPS) 

The method of MPS can be considered 

as an alternative to the maximum likelihood 

(ML) method for estimating the parameters 

of a continuous univariate distribution 

(Cheng and Amin, 1983). This approach 

was introduced for the shifted continuous 

univariate distributions when the ML 

estimators break down. The MPS 

estimators are asymptotically normal and as 

efficient (Cheng and Amin, 1979). The 

MPS approach works on the basis of: 

maximizing the mean of log-spacing 
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function ( , , )S     defined as  
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with respect to 
T),,(   where 

(0)( , , , ) = 0F x     and ( )( , , , ) = 1mF x     

with = 1m n  . Here, in order to compute the 
MPS estimators of three-parameter Weibull 
distribution, we use the optim function 
developed for R environment to maximize the 
right-hand side of (21). 

 

Modified maximum likelihood (MML) 

Based on MML approach, the log-

likelihood function of a three-parameter 

Weibull distribution is given by Cohen and 

Whitten, (1982)  as:

 

=1 =1
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i i
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is maximized with respect to ( , , )T    

under three scenarios. In the following we 
review three types of the MML briefly. 

   
• MML type I: The log-likelihood function 
(22) is maximized subject to the constraint:  
 

(1)
log = .

1

xn

n






  
  
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                 (23) 

 

The first ordered observation is 

sufficient statistic for  . So, the right-hand 

side of (22) is maximized with respect to 

( , , )T    when  log / ( 1)n n   is 

replaced with 
(1)( ) /x    .  

 

• MML type II: In this case, the 

( , , )l     in (22) is maximized subject to 

the constraint:  
 

1

(1)( ) = (1/ 1).E X n   


                  (24) 

 

So, the ( , , )l     is maximized with 

respect to ( , , )T    when (1)x  is replaced 

with right-hand side of (24). 

  

• MML type III: It is well known that 

( ) =E X X  and ( ) = (1/ 1)E X      . 

The MML type III is obtained by 

maximizing the ( , , )l     subject to the 

constraint:  
 

= (1/ 1).X                              (25) 

 

• MML type IV: Taking into account the 

fact that the median of random variable X  

is 
1/(log(2))   , the MML type IV is 

obtained by maximizing the ( , , )l     

subject to the condition:  
 

1/= (log(2)) ,mX                          (26) 
 

where mX  is the sample median.  

 

Method of moment (MM) 

The MM approach works by equating 

the first three population moments to the 

corresponding sample moments. Let X , 
2S , and 3S  denote the sample mean, 

variance, and skewness, respectively. It 

follows that (Dodson, 2006; Wayne, 1982; 

Norman et al., 1994): 

3
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2 2 2= [ (2 / 1) (1/ 1)],S           (28) 

 

= (1/ 1).X                                 (29) 

 

After extracting   from equation (27) and 

substituting the extracted   into equations 

(28) and (29), the scale and location 

parameters are estimated by solving the 

equations (28) and (29), respectively.  

 

Method of modified moment (MMM) 

Similar to MML, the MM also uses the 

constraints to estimate the parameters 

(Cohen and Whitten, 1982).  
 

• MMM type I: The shape parameter   is 

estimated by solving the equation given by:  
 

2 2

22 1/
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Once we have obtained  , as ̂ , then 

  is obtained as   from equation:  

 
2 2 2 2ˆ ˆ= (2 / 1) (1/ 1),S          

 

and then   is estimated as:  

 

ˆ ˆ ˆ= (1/ 1).X    
 

 

• MMM type II: The shape parameter   

is estimated through solving the equation:  
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Once we have obtained   as ̂ , again 

  is obtained as   from equation:  

 
2 2 2 2ˆ ˆ= (2 / 1) (1/ 1),S          

 

and then   is estimated as:  

 

ˆ ˆ ˆ= (1/ 1).X    
 

 

• MMM type III: The shape parameter   

is estimated through solving the equation:  
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Once we have obtained  , as ̂ , again 

  is obtained as   from equation:  

 
2 2 2 2ˆ ˆ= (2 / 1) (1/ 1),S          

 

and then   is estimated as:  

 

ˆ ˆ ˆ= (1/ 1).X    
 

 

Method of maximum likelihood (ML) 

The ML estimators of the parameters   

and   are given by:  
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After estimating   and  , the 

parameter   will be estimated as:  
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Weighted maximum likelihood (WML) 

The WML estimators of the parameters 
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  and   are given by: 
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where the weights 1W  and 2W  have been 

defined in Subsection 2.2.2, and 3W  is 

given by:  
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After estimating   and  , the 

parameter   will be estimated as:  
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The sampling distributions of the 3W  is 

unknown and is replaced by its median 

(Cousineau, 2009). For computing the 

median of 3W , we carried out a 

comprehensive Monte Carlo simulation for 

different levels of   (from 0.5 to 5 by 0.2) 

and small sample size =1, ,100n . 

 

Goodness-of-fit test 

Here, we perform a real data analysis 

involving comparison between performances 

of all methods introduced in the previous 

subsection for estimating the parameters of 

two-and three-parameter Weibull distributions. 

These methods are applied to the dbh data 

described in previous subsection. To 

implement these techniques, programs have 

been written in R environment (R Core 

Team, 2018). In order to compare the 

performance of estimators we employed the 

Kolmogorov-Smirnov (KS) and Cramer-

Von Mises (CVM) distances which are 

given by:  
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where ˆ ˆˆ(.; , , )F     is the distribution 

function of two- or three-parameter Weibull 

distribution under estimated parameters ̂ , 

̂ , and ̂ . We note that if a two-parameter 

Weibull distribution is fitted to the data, 

then ˆ = 0 .  

 

Results and Discussion 

The results are given in Table 2 and 

Table 3. The histogram of data dbh is 

described in Subsection 2.1 superimposed 
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by the fitted pdfs of two- and three-

parameter Weibull given in Figure 1 and 

Figure 2, respectively.  

 

 

 

 
 

 
 

 
 

Figure 1. Fitted pdf to the dbh data using estimators for two-parameter Weibull distribution. 
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Figure 2. Fitted pdf to the dbh data using estimators for three-parameter Weibull distribution. 
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Table 2. Estimation results for fitting three-parameter Weibull model to dbh data. 

Method 
Estimated parameters goodness-of-fit measures 

̂  ̂  ̂  KS CVM 

TL 0.83508 16.76002 6.55764 0.06944 0.36494 

MPS 0.96126 18.80060 5.96106 0.07018 0.60681 

MML type I 0.96883 18.47404 6.00000 0.06774 0.54743 

MML type II 0.96299 18.64702 5.63625 0.07054 0.56176 

MML type III 0.38531 2.974900 14.0000 0.39849 10.6387 

MML type IV 0.36690 28.51173 6.00000 0.25524 9.57417 

MM 0.88827 10.35778 14.0208 0.39849 14.5437 

MMM type I 0.92131 18.30872 5.97289 0.06385 0.49649 

MMM type II 0.92136 18.31031 5.97180 0.06390 0.49681 

MMM type III 0.65182 9.54890 11.99281 0.30161 5.01207 

ML 0.94051 18.94471 6.00000 0.07092 0.62513 

WML 0.94051 18.94471 6.00000 0.07092 0.62513 

 

 

Table 3. Estimation results for fitting two-parameter Weibull model to dbh data. 

Method 
Estimated parameters goodness-of-fit measures 

̂  ̂  KS CVM 

MLE 1.36620 27.61208 0.124644 2.35193 

WMLE 1.36620 27.61208 0.12464 2.35193 

GLS1 1.72611 27.74422 0.17138 3.94360 

GLS2 1.68685 27.74996 0.16591 3.70796 

WLS 1.39034 25.46912 0.13541 1.67160 

LM 1.32747 27.17786 0.13471 2.14956 

MLM 1.84778 6.763329 0.70576 97.0987 

PM 1.62721 22.20840 0.12454 1.49667 

MM 1.21517 26.66050 0.16118 2.17345 

MR 1.32520 27.31969 0.13418 2.19901 

 

The following observations can be made 

from Tables 2 and 3.  

1. In two-parameter case, the percentile 

method outperforms other competitors in 

terms of both criteria KS and CVM.  

2. In three-parameter case, the TL-moment 

method outperforms all other competitors 

for CVM criterion.  

3. In three-parameter case, the modified 

method of moments type I and type II 

outperform the other competitors in terms 

of KS criterion.  

 

Although the data used in this study 

come from an uneven-aged beech forest, 

the performance of method of moments in 

estimating parameters for three-parameter 

Weibull distribution is in agreement with 

the results reported by Lei (2008) in a pine 

plantation.  

4. It should be noted that both ML and 

WML methods give the same estimators. 

This is due to the fact that all three weights 

corresponding to the WML method are 

computed just for samples of size less than 

or equal to 100. For sample sizes larger 
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than 100, similar to our real example, both 

ML and WML methods give the same 

estimators.   

 

Conclusion 

We have compared the performance     

of the ten methods of estimating the two-

parameter and twelve methods for 

estimating the three-parameter Weibull 

distributions for modelling the diameter at 

breast height of trees. The comparisons 

were made using Kolmogorov-Smirnov 

(KS) and Cramer Von-Mises (CVM) 

criteria. Although the one-hectare studied 

plot is a good representative of uneven-

aged beech forest with a wide range of 

diameter distribution, it should be noted 

that changes in stand attributes may 

influence the results in other uneven-aged 

beech forest. Hence, caution should be 

emphasized before recommendations are 

made as to which methods are appropriate 

for parameter estimating of Weibull 

distribution. We note that although the data 

used in this study come from an uneven-

aged beech forest, but the performance of 

method of moments in estimating the 

parameters of three-parameter Weibull 

distribution is in agreement with the results 

reported in the literature for pine 

population. 
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